
U.S.N.A. --- Trident Scholar project report; no. 328 (2004)

SYNTHESIS OF A CONTROLLER FOR SWARMING ROBOTS PERFORMING
UNDERWATER MINE COUNTERMEASURES

by

Midshipman Yong Chye Tan, Class of 2004
United States Naval Academy

Annapolis, Maryland

(signature)

Certification of Adviser Approval

Associate Professor Bradley E. Bishop

Weapons and Systems Engineering Department

(signature)

(date)

Acceptance for the Trident Scholar Committee

Professor Joyce E. Shade
Deputy Director of Research & Scholarship

(signature)

(date)

USNA-1531-2

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including g the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
5 May 2004

3. REPORT TYPE AND DATE COVERED

4. TITLE AND SUBTITLE
 Synthesis of a controller for swarming robots
performing underwater mine countermeasures
6. AUTHOR(S)
 Tan, Yong Chye, 1980-

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER

US Naval Academy
Annapolis, MD 21402

Trident Scholar project report no.
328 (2004)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
This document has been approved for public release; its distribution
is UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT:
This Trident Scholar project involved the synthesis of a swarm controller that is suitable for controlling movements of a group of
autonomous robots performing underwater mine countermeasures (UMCM). The main objective of this research project was to
combine behavior-based robot control methods with systems-theoretic swarm control techniques to achieve a hybrid that has
the best characteristics of both. The sub-goals were:
a) To simulate and study a simplified version of the UMCM problem, in 2D with basic robot dynamics and behaviors.
b) To investigate the performance of both behavior-based and systems-theoretic controllers for UMCM, and to determine their
advantages and disadvantages.

Careful development of behavior-based methods using a non-traditional differential equations approach facilitated the
hybridization of the two controllers under study, giving rise to a more functional controller capable of controlling swarm level
functions while executing the appropriate behaviors at the same time.

15. NUMBER OF PAGES
111

14. SUBJECT TERMS:
Swarm Control, Autonomous Mine Hunters

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298
 (Rev.2-89) Prescribed by ANSI Std. Z39-18

298-102

 2

Abstract

 This Trident Scholar project involved the synthesis of a swarm controller that is

suitable for controlling movements of a group of autonomous robots performing underwater

mine countermeasures (UMCM).

 The main objective of this research project was to combine behavior-based robot

control methods with systems-theoretic swarm control techniques to achieve a hybrid that has the

best characteristics of both.

 The sub-goals were:

 a) To simulate and study a simplified version of the UMCM problem, in 2D with basic

robot dynamics and behaviors.

 b) To investigate the performance of both behavior-based and systems-theoretic

controllers for UMCM, and to determine their advantages and disadvantages.

 Careful development of behavior-based methods using a non-traditional differential

equations approach facilitated the hybridization of the two controllers under study, giving rise to

a more functional controller capable of controlling swarm level functions while executing the

appropriate behaviors at the same time.

Keywords: Swarm Control, Autonomous Mine Hunters

 3

Acknowledgments

 First and foremost, I would like to thank my advisor, Professor Bradley E. Bishop, for

his guidance and advice. His wealth of knowledge and understanding of a myriad of topics and

fields not only helped me in expanding my knowledge in Systems Engineering but also kept me

grounded on what was achievable and what was not. Special thanks go out to Professor Shade

and the Trident Scholar Committee for their dedication and hard work to ensure that the Trident

Scholar Program is running smoothly. The countless long nights plugging through thick stacks

of reports is much appreciated. The feedback from members of my Trident Visiting Committee,

Prof. Andre, Prof. Zak and LT Hitchcock was especially helpful in making this research more

cogent and coherent. Many thanks goes to Mr. Douglas McGee for teaching the finer workings

of utilizing the search engines for professional papers, which effectively freed more time, for me,

to work on the computers. Lastly, to my sponsors, John and Rose Cantrell, and Douglas Meister

for their encouragement and support as well as shelter whenever I had to leave the hall to seek

refuge from this project.

 4

Preface

 Modeled after colonies of ants or bees, autonomous robots working in cooperation have

the potential of achieving complex functions with increased efficiency over single-unit methods.

Cheaper, simpler robots that should comprise such a group are potentially suitable for a wide

assortment of applications in the civil and military environment.

 In the recent wars in Afghanistan and Iraq, robots were used to take over dangerous

operations such as surveillance, reconnaissance, mine searching, and other repetitive missions.

Multiple robots working together in a hostile environment may prove to be the new paradigm for

a war in which they fight alongside soldiers in the air, on land and the sea.

 This Trident Research Project focused on combining some of the work and theories

conceived by other scientists and engineers to achieve a hybrid controller for underwater mine

countermeasures (UMCM). The hybrid controller has the best characteristics of the original

controllers with fewer drawbacks.

Underwater mines, which are cheap, easily fielded and capable of causing millions of

dollars of damage, pose a major threat to navy ships. With recent developments in technology,

the Navy has become interested in employing Unmanned Underwater Vehicles (UUVs) and

Autonomous Underwater Vehicles (AUVs). The lack of human involvement is a key factor in

employing robots for this application.

 Eventually, robots will be programmed to conduct searches for mines autonomously

and cooperatively, hence bringing greater automation as well as freedom of reign in water to this

tricky problem. The results outlined in this report serve to demonstrate features of certain

techniques as well as highlight a new hybrid controller that may eventually be implemented as a

commercially viable controller.

 5

Table of Contents

Abstract ... 2

Acknowledgments... 3

Preface... 4

Table of Contents.. 5

List of Figures ... 8

1. Background.. 10

2. Introduction to Behavior-Based Robotics... 13

3. Motor Schema... 17

3.1. Artificial Potential Fields Theory ...17

3.2. Motor Schema Controllers for UMCM...20

3.2.1 Motivation for Using Motor Schema in Robotics in General...................................... 22

3.2.2 Previous and Current Work ... 22

3.2.3 Application of Motor Schema to UMCM.. 23

3.2.4 Motor Schema UMCM Implementation.. 23

3.2.4.1 Attractive and Repulsive Vectors ... 24

3.2.4.2 Attractive and Repulsive Vectors between Robots... 26

3.2.4.3 A Robot Swarm Moving Towards an Endpoint ... 27

3.2.4.4 Sample Run with Multiple Obstacles and Multiple Robots 30

3.2.4.5 Sample Run with Polygonal Obstacles ... 32

3.2.4.6 Additional Improvements to Motor Schema UMCM... 33

3.2.4.7 Robot Swarms Conducting Underwater Mine Countermeasures 34

3.3 Conclusions Drawn from Motor Schema ..37

 6

4. The Subsumption Architecture ... 39

4.1 Previous Work ...41

4.2 Relevance of Subsumption to UMCM...42

4.3 Subsumption Architecture for UMCM ..43

4.3.1 Subsumption Simulations .. 45

4.4 Conclusions Drawn from Subsumption Architectures ..49

5. Statistical Control... 51

5.1 Introduction to Statistical Control..51

5.2 Applications to UMCM ...52

5.3 Previous Work ...52

5.4 Fundamentals of Statistical Control...53

5.5. Components of the Statistical Controller..54

5.5.1 Task-Space Control.. 55

5.5.3 Null Space Control... 57

5.5.4 Task Arbiter ... 59

5.6 Statistical Simulations..60

5.6.1 Simulation Results of Statistical Controller... 61

5.6.2 Conclusions.. 63

5.7 Important Discovery ..64

6. Hybrid Controllers .. 65

6.1 Reasons for Hybrid Control ...65

6.2 Structure of Hybrid Controller...67

6.2.1 Hybrid Controller Combining Subsumption with Statistical Method 67

 7

6.2.2 Simulation Results ... 69

6.2.3 Conclusions.. 71

6.3 Hybrid Controller with Disturbances...71

6.3.1 Conclusions.. 75

6.4 Hybrid Controller with Vector Compensation...75

6.4.1 Conclusions.. 78

7. Summary of findings... 79

8. References …………………………………………………………………………………….84

9. Appendices, A-O……………………………………………………………………..………..86

 8

List of Figures

Figure 1: Conceptual diagram of motion of a robot influenced by Artificial Potential Fields..... 20

Figure 2: Motor schema diagram... 21

Figure 3: Motor schema architecture for mine hunting .. 21

Figure 4: Simulation of a robot avoiding an obstacle combining 'Begin_Search' and

Avoid_Obstacle'.. 25

Figure 5: Plot of 3 robots performing 'Aggregation_Separation.' Initial positions are marked with

an 'O'. .. 27

Figure 6: Plot of 3 robots avoiding an obstacle .. 28

Figure 7: Plot of individual robot tracks without normalized (limited) speeds. 29

Figure 8: 3 swarming robots avoiding an obstacle with normalized tracks.................................. 29

Figure 9: Individual robot tracks with normalized (limited) speed. ... 30

Figure 10: Multiple robots avoiding multiple obstacles ... 31

Figure 11: Individual robot tracks avoiding multiple obstacles.. 31

Figure 12: Plot of motor schema with new obstacles. .. 32

Figure 13: Individual tracks of the robots avoiding new obstacles. ... 33

Figure 14: Local minima of robots with associated collision. .. 34

Figure 15: System with added 'Random_search' behavior. .. 34

Figure 16: Robot swarm conducting UMCM ... 36

Figure 17: Parallel SAR search pattern... 36

Figure 18: Robot swarm performing UMCM with motor schema ... 37

Figure 19: Subsumption architecture of a typical robot.. 40

Figure 20: Subsumption architecture of a mine-hunting robot... 43

Figure 21: 3 robots performing UMCM under subsumption architecture.................................... 46

 9

Figure 22: Plot of individual tracks for subsumption architecture ... 46

Figure 23: Diagram of a statistical controller ... 55

Figure 24: Proportional gain control... 56

Figure 25: Plot of the motion of a robot swarm.. 62

Figure 26: Plot of actual and desired mean and variance of statistical control............................. 62

Figure 27: Table of comparison of the controllers.. 66

Figure 28: Hybrid controller block diagram ... 67

Figure 29: Behavior arbiter block embedded with subsumption.. 68

Figure 30: Plot of motion of robot swarm with hybrid control... 70

Figure 31: Plot of mean and variance in X and Y with hybrid control... 70

Figure 32: Hybrid controller block diagram with environmental disturbance 72

Figure 33: Vector field depicting a drift current ... 72

Figure 34: Plot of swarming robots with hybrid control in a drift current 73

Figure 35: Plot of mean and variance of a hybrid controller in a drift current 74

Figure 36: Block diagram of a hybrid controller with vector compensation................................ 76

Figure 37: Plot of swarming robots with hybrid control and vector compensation...................... 77

Figure 38: Tracking errors for a hybrid controller with vector compensation 78

 10

1. Background

A robotic swarm can be described as a group of simple robots working cooperatively.

Well-designed swarms ideally perform the same tasks as complex robots, but with increased

efficiency and robustness, to withstand damage and environmental fluctuations. These

advantages indicate that swarms of robots may prove to be very useful in the harsh and taxing

conditions associated with underwater mine countermeasures (UMCM).

Common traditional UMCM methods include using specialized ships, mine hunters, and

mine sweepers to perform mine clearance operations, or relying on divers to defuse mines by

hand. However, sailors are the most important asset to the Navy, and the objective of using

modern technology is to ensure their safety. In the 1990s, Remote-Operated Vehicles (ROVs)

were used extensively for mine hunting and only in recent years have advances in computing

capability and understanding of automated craft allowed Autonomous Underwater Vehicles

(AUVs) or Unmanned Underwater Vehicles (UUVs) to become viable alternatives to ROVs.

Currently, AUVs are employed on Navy ships, but most deployments use only a single

unit or a pair of cooperating units to carry out simple tasks. To increase performance in UMCM,

suitable control architectures must be developed for swarm AUVs cooperatively carrying out a

deliberate search scheme. Such controllers will offer substantial increases in performance in the

critical domain of UMCM, and may be ideal for solving the age-old problem of undersea mines.

Applying a swarm of robots to mine hunting will improve efficiency, widen the search area as

well as reduce the search time, and will be clearly observable (as with humans… more searchers

are better), outweighing the performance of one or two robots. Adding a hybrid controller may

open up further applications for autonomous deep-sea exploration or discovery of liquid

 11

environments in other planets. Lastly, the cost of replacing a robot is less should one simple

robot be destroyed as compared to that of a sophisticated one.

Hardware will never work without the software that drives it and gives it intelligence.

Several existing control strategies were considered for application in maneuvering a swarm. The

two main groups of controls that were studied extensively are the systems-theoretic and

behavior-based approaches. 1,2

Systems-theoretic methods have provable performance and a well-understood design

methodology, but are only viable when the environment is predictable and most, if not all, of the

information about the environment is known. Rigid programming practices in some of these

methods tend to generate pre-planned algorithms that try to control the smallest behaviors. By

contrast, behavior-based approaches are flexible, simplistic and require neither large amounts of

information nor specific details about the environment; they give rise to indeterministic yet

interesting and useful ‘emergent’ outcomes as a result of their interactions with the environment.

A highly effective method of controlling multiple robots is the statistical approach, which

is currently best classified as a systems-theoretic technique. The statistical method controls

swarm-level functions (such as the mean and variance of the swarm) to direct the movement of

the robots. During the course of this project, it has been demonstrated that there is a possibility

of combining behavior-based and statistical approaches to give a better, more functional

controller. The new controller generated is able to maneuver and direct a swarm of robots more

effectively than either of the constituent methods. That hybridization became the primary focus

of this research.

 Several requirements were set to select viable and effective controllers for robotic

UMCM. The first required that the robots be fairly simple in structure so that, while operating

 12

individually, they will not be bogged down by computational complexity. In this project, robots

were assumed to be holonomic (able to move in any direction from any pose) and velocity

controlled. The next requirement was that the controller had to create a system such that a fairly

autonomous robot swarm is able to make decisions on its own, without depending on an external

source of information. To achieve this autonomy, each robot was required to compromise some

personal freedom to contribute to the overall independence of the swarm. Centralized (each unit

given its orders by a central controller) as well as decentralized (each unit acts independently)

approaches were considered to determine which form of control was more applicable to UMCM.

This paper is organized as follows. An overview of behavior-based robotics, its roots and

developments, is given in Section 2, followed by two separate sections on the favored behavior-

based structures: Motor Schema (Section 3) and Subsumption (Section 4). The relevance of

each method to mine countermeasures is discussed in its respective section. Section 5 covers the

basics of statistical control and explains some discoveries that allowed behavior-based methods

to be merged with that architecture. Section 5 also details the components of the statistical

controller and how they affect its actual operation. Section 6 touches on the hybridization of the

controllers and how it affects the predicted outcomes of the system as well as its performance

under simulated environmental effects. Section 7 summarizes the process of the research and the

conclusions drawn from it.

 13

2. Introduction to Behavior-Based Robotics

 What exactly are robots? According to the definition given by the Robotics Institute of

America (RIA), “a robot is a reprogrammable, multi-functional, manipulator designed to move

material, parts, tools, or specialized devices through variable programmed motions for the

performance of a variety of tasks”3 Robots involved in this project, however, belong to a more

sophisticated breed. These Autonomous Underwater Vehicles (AUVs) or Unmanned

Underwater Vehicles (UUVs) are categorized as intelligent robots. “An intelligent robot is a

machine that is able to extract information from its environment and use knowledge about its

world to move safely in a meaningful and purposive manner.”4 In this project, simulated AUVs

and UUVs were employed to detect mines in the highly variable oceanic environment, using

information collected to avoid obstacles while at the same time relaying mine information to a

mother ship.

Artificial intelligence plays an important role in enabling robots to behave in a manner

similar to humans, conducting their own operational decision processes. Thus, the robots used in

this project needed to be able to recognize and differentiate between pieces of information and

make links to the particular tasks designated by the correct information.

Neural networks and fuzzy logic are several common means of recreating human-like

decision structures in robots.5 These systems are especially useful when mimicking human

decision structures in performing a complex, hard-to-model task. Unfortunately, these methods

typically require a great deal of training (generating enough runs to allow the system to learn and

create a response) to be successful at even the most straightforward tasks.

Behavior-based robotics is a much simpler method of control, based on the decision-

making capabilities of lower life forms. The initial phase of this project focused on the

 14

evaluation of behavior-based methods for the UMCM problem. This method was studied first

because it is known to be a reactive controller that does not require exhaustive amounts of

information. Behavior-based robotics has two main types of structures that make it a versatile

controller for enabling several robots to move in cooperation.

Behavior-based robotic controllers were originally devised for robots that were to be used

in environments that are difficult to model.6 This class of controllers reacts readily to the

changes in the environment, unlike many traditional systems-theoretic control approaches in

which all the unknown information or details in an area have to be accounted for to ensure that

the robotic agents are able to move.

Behavior-based systems, characterized by a reactive nature, generate robot responses

based on current sensory information alone, typically through a very simple sensor-motor

mapping.7 By responding directly to a stimulus, the system efficiently discards all other

environmental factors irrelevant to the problem. Simple low-level behaviors (such as

‘Avoid_Obstacle’ or ‘Seek_Light’) are combined to form a modular, often hierarchical, behavior

system, which collectively reacts to a variety of stimuli in varying ways.8 This combination of

simple behaviors also leads to making the system completely indeterminate. Another interesting

characteristic of behavior-based systems is that in event of a sensor breakdown, the robot will

default to a lower-level behavior and perform its task as best as it can.

Behavior-based decision processes do not utilize the human cognitive process, but follow

a simple sense-think-act sequence.9 Each robot uses all sensory information it gathers to select

actions guided by specific rules. If each member of a robot swarm were equipped with an

independent behavior-based controller, the members would be able to move independently, a

highly regarded characteristic, since it places little computational strain on the central controlling

 15

body. In other words, this type of control is promising for creating a decentralized autonomous

underwater control system of multiple robots. Behavior-based control was therefore an excellent

candidate for generating a fast and efficient means of reacting in a hostile and unknown

environment for the UMCM problem.

 Two specific behavior-based architectures were used for testing and implementation of

robotic UMCM: motor schema and subsumption. Both of these approaches were originally

designed and intended for single-robot (decentralized) control. Under these architectures, the

robots each act independently, and the overall swarm behavior arises from their interactions with

the environment and each other.

The study of schema-based systems was adapted from Dr. Arbib, who made a link

between behavioral expressions in nature and behavior-based controls in robotics. 10,11 The

schema-based theory combines behaviors for numerous tasks at the same time, and demonstrates

how the system can react based on the calculation of simple equations. Dr. Ronald Arkin, who

first addressed the implications of using motor schema for navigation in 1987 and later published

several related papers, was the first researcher who focused on the method’s applications on

autonomous robotics.12 He proposed that motor schema could be set up in such a way that there

were direct relationships between sensors (perception agents) and the motors (end effectors)

present in the system. The behavioral responses were represented in vector forms using an

Artificial Potential Fields technique that will be discussed in the next section.

 The second approach for behavior-based architectures used subsumption structures. Dr.

Rodney Brooks of Massachusetts Institute of Technology first devised the concept of

subsumption architecture in 1986.13 Brooks’ proposal was also a purely reactive system, which

allowed the robot to decide what to do next, based entirely on current sensor data, without any

 16

structured planning.14 Subsumption-based systems were built hierarchically with increasing

complexity. Only one behavior was expressed at any point in time as a result of a suppressor

function that restrained other lower behaviors within the hierarchy. The subsumption

architecture was therefore a discrete rule-based process that allowed reactions to be triggered by

pre-defined sensory information. Complex robot motions arose from the combination and

switching among simple behaviors.

Brooks’ idea was against the mainstream definition of artificial intelligence at that time,

which required robotic decision structures to be organized with a complete appreciation of the

surrounding environment. Brooks argued that the standard practice of using systems-theoretic

methods was preventing the robot from making timely responses and forcing less flexibility in

the control scheme. The simplicity and flexibility of the behavior-based approach proved that it

was capable of performing well in a highly variable environment.

In conclusion, behavior-based robotics methods allow robots to perform tasks similar to

humans by linking given information to a predetermined action. Reacting to particular sources

of information and then performing a specific task reduces the need for an understanding of the

entire environment. The control structure of behavior-based robots is simplistic and can be

manipulated for practical applications. The focus of the next segment of the project was to

generate working examples of existing behavior-based architectures for robots performing

underwater mine countermeasures.

 17

3. Motor Schema

 Motor schema theory states that individual behaviors that act in response to different

sensory inputs can be combined to give a resultant control vector that incorporates all of the

simple behaviors. If the sensor-motor reactions can be written as simple velocity control vectors,

this can be accomplished by a vector sum. The most common approach for motor schema

implementations is the use of Artificial Potential Fields.

3.1. Artificial Potential Fields Theory

Artificial Potential Fields (APFs) arose in the early days of robot motion planning as a

simple, computationally efficient planning routine. APF methods use simplified version of laws

of nature, attractive and repulsive potential, to draw or repel an object (the robot) from one point

to another.15 In motor schema, an attractive or repulsive potential constitutes a behavior that

arises as a result of a sensory stimulus. A wide variety of behavior commands can be derived,

such as Avoid_Obstacle, Move_to_Light and Random_Search.

 APF theory uses the positions of two points of interest to calculate attractive and

repulsive vectors. The potentials are based on the vector connecting the two points of interest (in

2D for purposes of this work). The nature of the resulting potential will depend on the

underlying behavior. The expressions for attractive potentials and repulsive potentials are

slightly different since their desired reaction to a stimulus is inherently different.

 Consider the example of an attractive potential for a robot moving towards the calculated

centroid of a swarm (hence, an Aggregation behavior). The gradient of the potential field is

determined by finding the difference between the position of the robot and that of the centroid.

The angle between the two points is found by using the inverse tangent in the world coordinate

 18

frame. Lastly, the attractive vector in the x direction is found by multiplying the magnitude of

the original vector by the cosine of the angle found, while the vector in the y direction is found

the same way, with the only difference being multiplication with a sine. Example MATLAB

code for developing the attractive vector is given below, where [Xc, Yc] is the center of the group

of robots and [ROBOT(i,1), ROBOT(i,2)] are the (x, y) position of a robot of interest.

Mag_change=norm ([Xc-ROBOT (i, 1), Yc-ROBOT (i, 2)]); % finding the magnitude
theta_att=atan2 (Yc-ROBOT (i, 2), Xc-ROBOT (i, 1)); %angle between two points

att (i, 1)=Mag_change*cos (theta_att); % find x attractive potential
att (i, 2)=Mag_change*sin (theta_att); % find y attractive potential

attctrl (i,:)= Katt* att (i,:); % attractive potential towards each other, Katt is the vector gain

The effect of this attractive potential draws the robot towards the centroid. An interesting

observation is that the attractive potential results in rapid motion towards the destination if the

distance is large but decreases gradually as the robot approaches the final position, finally

stopping at the target.

 The repulsive potential, on the other hand, does the complete opposite. The final

calculation of the repulsive potential is highlighted by the multiplication of the x and y

components of the vector with a (1/distance) factor. This factor creates the opposite behavior of

that of the attractive behavior. As the robot moves towards an obstacle (some object in the

environment or even another robot), the magnitude of the distance between the two points

becomes smaller, approaching zero. As a result, the repulsive potential jumps to infinity when

the robot is close to the object. This infinite repulsive vector guarantees that there can be no

collision unless some other vector also increases unboundedly. Thus, it is common in motor

schema systems to generate potentials that are all upper-bounded with the sole exception of the

obstacle avoidance routine.

 19

The code below demonstrates the computation of the repulsive vector. The

[ROBOT(i,1), ROBOT(i,2)] are the (x, y) position of a robot of interest, [OBSTACLES(position,

1), OBSTACLES(position, 2)] are the position of the obstacles, and Mag_L is the magnitude of

the distance from the robot to the obstacles. The radius of the circular obstacle, r1, will be

required for finding the exact distance between the robot and the obstacle so that it mimics the

maximum distance from the robot to the external radius of the obstacle. Rho is the radius of the

obstacle plus the sensing radius of the robot to the external radius of the robot. The calculation

with the radius and angles accounts for the distances between the robot and the edge of the

obstacle. Repobst represents the repulsive vector, which gives the resultant motion of generating

a strong repulsive vector away from the edge of the obstacle as the robot approaches it.

Repobst =)_sin(
1

1
)_cos(

_

1
obsttheta

rRho
obsttheta

LMag −
−

theta_obst=atan2 (ROBOT(i, 2)-OBSTACLE(position, 2), ROBOT(i, 1)-OBSTACLE(position, 1));
% angle of repulsion form obstacle

Xdist=(ROBOT (i, 1)-OBSTACLE (position, 1)-rl*cos (theta_obst));
Ydist=(ROBOT (i, 2)-OBSTACLE (position, 2)-rl*sin (theta_obst));

% Vector to show length of repulsion vector to obstacle
Mag_L=norm ([Xdist; Ydist]); %normalize vector for magnitude of length
repobst (i, 1)= ((1/Mag_L)*cos (theta_obst))-((1/(rho-rl))*cos (theta_obst));
repobst (i, 2)= ((1/Mag_L)*sin (theta_obst))-((1/(rho-rl))*sin (theta_obst));

The example shows that the theta_obst and the magnitude, Mag_L is computed similarly to that

of the attractive potential but the repulsive vector differs in the 1/Mag_L.

 Figure 1 shows how the attractive and repulsive vectors are summed to produce a

resultant vector that directs the path of the robot. As the robot moves towards the endpoint, the

attractive vector becomes shorter, representative of the decreasing value. The value of the

repulsive vector steadily increases as the robot gets close to the obstacle, and pushes the robot

away from it, preventing a collision.

 20

Figure 1: Conceptual diagram of motion of a robot influenced by Artificial Potential Fields

3.2. Motor Schema Controllers for UMCM

 The potential fields methods described above are used in a behavior-based control

method called ‘motor schema’. The motor schema architecture is shown in Figure 2. The first

characteristic of motor schema is similar to most other behavior-based approaches: it is

dependent on the environment to provide stimulus to the system to create some reaction. The

next characteristic is the presence of numerous environmental sensors designed to pick up

specific changes in the environment so that the appropriate response can be triggered. The

information picked up by the environmental sensors is transferred to the perception schema,

which triggers the specific response programmed. A number of these perception schemas

derived from different sensors play a part in creating an overall composite motor schema to tell

the robot how to move. Several motor schemas contribute to create a single summation

Fmal positioii

a-attiactive potential
r-iepulsive potential
f-fvial resultant potential

 21

behavior. Figure 3 illustrates how the specific behaviors can be summed to generate a resultant

motion in accordance to the motor schema structure.

Figure 2: Motor schema diagram16

Figure 3: Motor schema architecture for mine hunting

Motor
Behavior

F:^ine(l) Moloiscliemaielaliciislups
Sliowii^ Ihe veclor sum of behaviois doe to
envuomaeiildl influences

Delect Obstacles
Avoid Obstacle

Detect mmes^

Detect other
Robots

Generate.
Motiofi

Avoid Mmes

^giegation_Separa1ioii

Random search

Resultant Motion

Motor Schema diagram demonstrating sum of group behaviors

 22

 3.2.1 Motivation for Using Motor Schema in Robotics in General

 There are several reasons why motor schemas are created and applied in behavior-based

architectures. First of all, motor schemas essentially consist of simple systems that are

fundamentally easy to execute and debug, which is helpful for generating a robust system of

control. This is achieved by using simple individual behaviors as the building blocks of a

complex system. Complexity can thus be built from the summation of these simple behaviors.

Additionally, a system using motor schema is very capable of working effectively in an unknown

dynamic environment. By having the environmental sensors tuned only to pick up specific

information, other uncertainties and contributing errors are removed. Furthermore, this allows

relevant information to be used only at a specific point in time once the environmental sensors

have been fired. Lastly, the lack of complex, pre-determined planning structure simplifies the

system. A motor schema system makes use of pre-determined direct relationships between

sensors and receptors, and allows the system to run freely. Therefore the system is

indeterministic in nature and results are an expression of the behaviors due to the environment.

3.2.2 Previous and Current Work

 Dr Ronald Arkin of the Georgia Institute of Technology has done most of the current

work on applying APF to the motor schema behavior-based architecture. His book, Behavior-

Based Robotics, has become a popular text with college professors who are teaching about

behavior-based robotics. His book grew from his 1988 paper on Artificial Potential Fields

theory, and his belief in the lack of a suitable text that addresses the theories and applications of

behavior-based artificial intelligence. Much additional research has stemmed from his

discoveries. 17,18

 23

3.2.3 Application of Motor Schema to UMCM

 The motor schema approach is extremely well suited for mine hunting, since the

undersea environment is relatively unknown and filled with numerous uncertainties. Hence,

engineers using motor schema in creating robots with behavior-based architectures may be more

successful in such dynamic environments. Furthermore, implementation in real life robots will

be relatively straightforward. The sensors used on a typical prototype would be situated around

the robot to increase sensory detection in the environment as the robot conducts a search in a

delineated area. Furthermore, motor schema, when programmed into individual robots, can

easily provide the basic instructions for moving and finding mines. These programmed basic

functions, combined with functions that prevent collisions, will give the robot some autonomy.

This form of control is classified as decentralized control since the robot does not take orders

from a central robot or receive information updates from a mother robot.

3.2.4 Motor Schema UMCM Implementation

 Several assumptions and operations are discussed before the experimental results are

explained. The simulated robots are assumed to be holonomic. Holonomic robots are those that

can move in all directions freely regardless of pose, which is unrealistic due to physical

limitations (think of parallel parking). However, in the simulations, holonomic robots prove to

be extremely useful to demonstrate the effects of different behaviors without worrying about

robot morphology and kinematics. Some holonomic systems do exist, and certain mathematical

tricks can be employed to make non-holonomic systems appear holonomic.19

 The robots are all assumed to be velocity controlled. That is, the behavior architecture is

designed to provide a desired velocity for the robots, based on sensor input. The robots are

 24

assumed at this point to be able to follow the commanded velocity exactly. In more advanced

simulations, environmental stimuli such as drift currents can be included to make the situations

more realistic. Although acceleration-based controllers are generally preferred to the velocity

based form that was employed in this project, the respective simulations do not differ

significantly for a well-designed controller.20 Therefore the velocity-based simulations

sufficiently represented the objectives of the project. Expressing the controller in acceleration

terms is a viable objective for future work.

 The initial simulations presented did not include drift or other environmental effects. It

was assumed that the robots had full control of their sensors and that these sensors were able to

detect their target stimulus in the water perfectly, although with limited range. Furthermore, the

robots were assumed to be fully communicative between each other, indicating a decentralized

control.

3.2.4.1 Attractive and Repulsive Vectors

 Code was developed in MATLAB (see Appendix A) to simulate a simple attractive-

repulsive combination for a single robot. The attractive behavior was ‘Begin_Search,’ while the

repulsive was ‘Avoid_Obstacle.’ This set of basic functions formed the basis for all future APF-

based techniques. The basic concepts are illustrated in Figure 1, while a sample run is shown in

Figure 4.

 The objective of the sample run shown in Figure 4 was to demonstrate the effects of the

repulsive and attractive vector acting on a holonomic robot. The plot shows a holonomic robot

starting at point (0,0) and moving towards (3,5) as a result of the attractive vector. As expected

 25

from the definition of ‘Begin_Search,’ the robot initially moved at high speeds and slowed down

when it neared the final point. The target point was reached with no collision.

 The deviation of the robot from a straight-line path was a result of the repulsive vector

created by ‘Avoid_Obstacle’ as the robot neared the object. The robot had a sensing radius of

0.3 units that kept it away from the object. This result stemmed from the calculation of the

repulsion factor where it was multiplied by inverse of the magnitude of the distance between the

robot and the obstacle, 1/Mag_L. As the robot approached the obstacle, a huge repulsive vector

in the opposite direction was created. Moreover, summed with the attractive vector, the robot

moved towards the final point even as it repelled away from the object.

Figure 4: Simulation of a robot avoiding an obstacle combining 'Begin_Search' and Avoid_Obstacle'

 26

3.2.4.2 Attractive and Repulsive Vectors between Robots

 The next step in developing a motor-schema based swarm controller was to build

behaviors for some interaction between cooperating robots. A simulation was written (see

Appendix B) that included three robots, each using an attractive APF toward the center of the

three combined with a repulsive APF from nearby robots.

 The sample run shown in Figure 5 demonstrates how this simple two-behavior motor

schema resulted in three robots staying within a certain distance from each other in an emergent

formation (a triangle, in this case) without collision. It is important to note that, since the robots

were not specified in a fixed formation, they move around the calculated center of mass,

repositioning themselves at the optimum location, where the attractive and repulsive vectors are

maximized. This behavior was labeled as ‘Aggregation_Separation,’ as it combines an attractive

potential to the center of mass with inter-robot repulsive potentials. The repulsive and attractive

vectors are each controlled by a respective gain, which determines the spread of the robot

positions around the center of mass. The behaviors demonstrated were very similar to the first

sample run since the repulsive and attractive vectors were utilized to move the robots to a pre-

determined point in space, but now multiple robots are cooperating.

 Several major observations arose from this simulation. Primary among these is that the

robots were kept in a simple formation around the centroid. The three robots kept their distance

from the centroid at an equal distance, which created a triangular formation. If there were four

robots, the mean formation was a square. As the numbers increased, the mean formation tends to

be concentric, with no specific structure. It was concluded that the robots generated the

attractive and repulsive vectors correctly, and that this behavior could be combined with the first

sample run shown in Figure 4.

 27

Figure 5: Plot of 3 robots performing 'Aggregation_Separation.' Initial positions are marked with an 'O'.

3.2.4.3 A Robot Swarm Moving Towards an Endpoint

 The objective of this next sample run was to combine the two controllers generated in

earlier programs. The new controller was designed to move a swarm to a target centroid while

maintaining each robot’s position with respect to the others using attractive and repulsive

potentials. The constituent motor schema of this sample run included the schema to force the

robots towards an endpoint (‘Begin_Search’), to cause the robots to avoid an obstacle while in

motion, (‘Avoid_Obstacle’), and to keep a particular distance away from the other robots without

collision, (‘Aggregation_Separation’). The results of the simulation can be seen in Figure 6.

This run demonstrated the process of building complexity using simple behaviors. Code can be

found in Appendix C.

This particular combination of different behaviors lacked a structured approach to

organize the priority of the behaviors. The resultant behavior was based on the sum of the

different behaviors, so it did not differentiate the order in which the behaviors were determined

Center of Swarm

 28

in the individual decision process of the robot. Moreover, each robot had a sensing radius of 0.3

units, which represented a sensory buffer that would prevent the robots from getting too close to

an obstacle or another robot. If a robot detected any obstacles inside this buffer zone, it would

create the repulsive vector and repel away from it.

Figure 6: Plot of 3 robots avoiding an obstacle

The plot in Figure 7, from the same sample run, shows the path of the robots with respect

to time for this simulation. From the three-variable plot, an observer can easily determine if the

robots were moving and colliding at any given time. If two paths of motion of the robots cross,

it means that the robots collided. Since the speed of the robots was not limited, the swarm

moved rapidly towards the endpoint, completing the motion in less than 5 seconds. The speeds

reached in this case were not representative of the speeds that could be reproduced in water.

 29

Figure 7: Plot of individual robot tracks without normalized (limited) speeds.

The following two plots, (Figures 8 and 9), show the same structure and behavior, but

with speed limited to 1 unit/sec. The reduction of the magnitude has specific real life application

to make the speeds executable on real robots.21 The robots took 44 seconds to reach the final

point. This approach allowed the user to change the gain to a suitable value to simulate the

speed of an AUV or UUV moving through the water.

Figure 8: 3 swarming robots avoiding an obstacle with normalized tracks.

 30

Figure 9: Individual robot tracks with normalized (limited) speed.

3.2.4.4 Sample Run with Multiple Obstacles and Multiple Robots

The next simulation was developed to demonstrate the capabilities of the designed

controller in more complex environments and with a larger number of robots. This simulation

included numerous obstacles that were made up of multiple circular sub-obstacles. From the

sample run in Figure 10, it was observed that the robots were able to avoid the obstacles while

moving towards the final point. The plot shows that the attractive and repulsive vectors worked

effectively together to generate the desired motion towards the endpoint.

Note that, as the number of robots increases (six in this case), the formation of the robots

becomes less apparent. This could be attributed to the change in mean positions, as the robots

were moving; hence the robots were not able to form a consistent shape around the center of

mass due to broad path changes resulting from obstacle avoidance. The plot of individual tracks

in Figure 11 shows that the robots were moving towards the endpoint without colliding with each

other. Code for these simulations can be found in Appendix D.

 31

A problem encountered during this particular run was the creation of multiple ‘meta’-

obstacles using smaller, circular obstacles. There were only certain shapes that could be created

due to the limitation of adding individual obstacle points. The benefit of this approach was that

computation of the nearest obstacle point was straightforward. However, as these shapes were

not realistic, this problem was addressed in later simulations by creating a more complex

obstacle field.

Figure 10: Multiple robots avoiding multiple obstacles

Figure 11: Individual robot tracks avoiding multipl e obstacles.

 32

3.2.4.5 Sample Run with Polygonal Obstacles

The next sample run was generated using more sophisticated obstacle modeling, with

shapes more representative of the objects the robots might encounter in the real undersea

environment. As seen in Figure 12 below, the shapes of the objects resembled those of ships.

An assumption made was that the robots would not be searching at great depths but would

mainly focus on littoral areas where the mines are more likely to be placed. Hence, in shallow

waters, the robots need to account for the hulls of the ships for obstacle avoidance.

Furthermore, with the generated change in obstacles, a new program for creating the

repulsive vector was modified and recreated from an existing program.22 The repulsive vector

function was called to determine the closest obstacle point from each robot and to generate a

repulsive vector away from the particular edge of the object. From the results of the runs, it was

seen that the programs work fairly well. The plot of the individual tracks showed no signs of

collision in Figure 13 and demonstrated the effectiveness of the controller in obstacle avoidance.

Code for the new obstacle avoidance routine can be found in Appendix E.

Figure 12: Plot of motor schema with new obstacles.

 33

Figure 13: Individual tracks of the robots avoiding new obstacles.

3.2.4.6 Additional Improvements to Motor Schema UMCM

 One major limitation of motor schema can be seen in the simulation shown in Figure 14,

where the robots collide with an obstacle. The results come from a phenomenon that is known as

local minima. 23,24 A robot using APF methods experiences local minima when the attractive and

repulsive vectors exactly cancel at some point. This occurred in the simulation when the desired

attractive potential was exactly perpendicular to an obstacle edge. One method to remedy this

problem is to add a random motion behavior, ‘Noise’, so as to increase the chances of the robot

moving out of the constrained region as shown in Figure 15. The new schema,

‘Random_Search’ involves a simple additive random velocity held over a small sample period,

and proves effective for small regions of attraction to local minima. More sophisticated

methods, involving recorded time histories, are sometimes used in complex problems.25

 34

Figure 14: Local minima of robots with associated collision.

Figure 15: System with added 'Random_search' behavior.

3.2.4.7 Robot Swarms Conducting Underwater Mine Countermeasures

The next simulation that was conducted combined some of the desired effects that have

been discussed in the runs mentioned previously. Specifically, this simulation combined

‘Begin_Search’ with ‘Avoid_Obstacle,’ ‘Aggregate_Separate’ and ‘Random_Search.’ The

resultant attractive vector pointed towards a weighted combination of the final point and the

center of mass while that of the repulsive vector pointed away from the other robots as well as

 35

the obstacles, with some random additive values. The obstacles, created to resembled ships,

were laid out to loosely represent ships steaming in a narrow stretch of water in an enclosed

channel. The robots were also able to repel away from those limits. Furthermore, the robots also

tagged the mines as they came close to them, while performing the new behavior ‘Avoid_mines’.

‘Avoid_Mines’ is effectively identical to ‘Avoid_Obstacle’ with the exception of the additional

tagging action. These basic simulations served the purpose of verifying the effectiveness of the

program by allowing a qualitative analysis of the performance of the system.

From the results, shown in Figure 16 on the next page, it was observed that the initial

positions of the robots formed a straight line. When the robots began to move toward the final

position initiated by ‘Begin_Search,’ individual robots moved to their respective relative

positions through the action of the behavioral vector component ‘Aggregation_Separation.’ The

second behavior allowed the robots to position themselves at a reasonable location from the

mean position of the respective robots. As the robots moved toward the final position, the

distance from between each robot was gradually reduced. ‘Avoid_Obstacle,’ was also at work,

evident from the obstacle avoidance around an object. The ‘Avoid_Mine’ behavior allowed the

robots to avoid the obstacles at the same time tagging the positions of the mines. MATLAB

code can be found in Appendix F.

The swarm motion patterns discussed thus far were ad hoc. The Parallel Search And

Rescue (SAR) pattern shown in Figure 17 was modeled after patterns adopted by the U.S. Coast

Guard for finding downed pilots or missing personnel at sea.26 The axis of search is parallel to

the major axis. It is a useful pattern to use when the search target has the possibility of being

anywhere along the major axis. Furthermore, fixed wing craft uses this pattern to cover a large

area in a short time. The objective of underwater mine clearance by AUVs and UUVs involves

 36

clearing a path for ships to pass through. This pattern satisfies the objective by clearing a path or

channel quickly while finding all mines and obstacles in the way.

Figure 16: Robot swarm conducting UMCM

Figure 17: Parallel SAR search pattern

 Figure 18 shows the robot swarm executing a search scheme to mark all the mines in the

sample minefield. The robots follow specific waypoints that delineate a path of search

mimicking the Parallel SAR pattern. The swarm exhibited good swarm maneuver capabilities,

avoiding obstacles and mines. However, the robots were not able to knowingly perform tasks

A west to east track search
Axis of search

Start
search

J ^ J ^ »

Track space

 37

according to changes in the environment. The resultant behaviors expressed were generated by a

vector sum of numerous behaviors, but the robots had no decision-making capability. Every

behavior was considered equally important at all times.

Figure 18: Robot swarm performing UMCM with motor schema

3.3 Conclusions Drawn from Motor Schema

 Some advantages of the motor schema were observed from the research conducted. First,

the behaviors are executed in real time, and this capability allows the robot to generate behaviors

in accordance to specific stimulus in the environment at a particular point in time without a full

knowledge of the environment. Second, the potential fields cause the robots to automatically

decelerate as they approach a target point, or accelerate away from an obstacle, which reduces

the dependence on velocity compensation in real life. Third, the schemas for each individual

behavior are very modular in nature. Throughout the process of developing the code, cutting and

splicing individual sequences of behaviors was very straightforward. This makes development

and addition of future behaviors a rather easy task. Lastly, it is worth noting that the control is

still decentralized. Under this control, the robots behave autonomously using available

10 12
x-coodinates

 38

information to make the right decisions. It is important to note, however, that the scope of this

research did not deal with how each robot determined the location of obstacles, the actual

centroid, or its own position using available sensors.

 Several disadvantages of a pure motor schema structure were also observed. The lack of

a clear decision structure made the system truly reactive. Placing different behaviors in a

hierarchical order would improve the functionality as well as allow certain behaviors to be

triggered only under specific circumstances.

 This phase of the project resulted in several major accomplishments with regards to the

motor schema approaches shown in this section. While the motor schema architecture is well

known, no specific methods have been described to generate behaviors that can be matched

precisely to such a desired objective. That is, there is no known closed-form design

methodology. Nonetheless, the groundwork done to generate appropriate behaviors for the

UMCM problem demonstrated that motor schema were viable for UMCM, and representative of

certain desirable traits of a mine-hunting robot. The behaviors were created using Artificial

Potential Fields since manipulating differential equations could generate the different behaviors.

The reduction of behaviors into differential equations made it possible for further development

and addition into other viable structures, which will be discussed in later sections.

 39

4. The Subsumption Architecture

Another form of behavior-based controls, the subsumption architecture, was also studied

for this research project. The strengths of subsumption architecture make up for the weaknesses

present in the motor schema control. It creates a decision hierarchy, whereby a robot is able to

make decisions based on the information currently present. However, subsumption is also

similar to other behavior-based controllers in that its structure is extremely reactive in nature.

Motor schema, as discussed in Section 3, has no decision hierarchy… each behavior is a

component of a composite behavior. The only structure motor schema possesses is the

summation of different potential fields contributing to the resultant force on a robot. In a

subsumption approach, only one behavior is active at any given time. There are no ‘expected’

behaviors in a subsumption system, since the robots are made to move at run time and the robot

has to figure out what to do next, based on the current information. 27

 A possible application of subsumption includes multi-agent controls, which were (in

part) investigated in this research. The significant characteristic employed for that purpose was

the decentralized nature of the robot control. Some have argued that even in service industries,

smaller modular robotic systems have clear advantages over traditional sophisticated ones in

terms of costs and susceptibility to damage or loss.28 To interconnect and relate information

between these robots is to use artificial intelligence structures such as subsumption. Several of

the direct comparisons between a conventional AI and behavior-based subsumption control can

be found in the paper written by Dr Van Dyke Parunak.29 He addresses the problems of

conventional AI methods, including slow response, need for a central computing body, fragile

responses to change, and difficulty in reconfiguration. The behavior-based approach, however,

 40

represents what happens in reality: fast response due to calculation at run time, robust response

to changes, and no need for a central computing agent.

The subsumption architecture builds complexity based on simple behaviors. This form of

decision structure overcomes traditional AI problems of integrating numerous sensors and

having to respond to multiple task goals. Such AI systems give specific instruction to actuators

to respond to the perceived sensory information. An advantage of the subsumption method is not

overwhelming the system by taxing the computer performing the computations, but by directing

specific reactions for different sensory information.

Another highlight of the subsumption architecture is the use of a behavior hierarchy that

coordinates decisions.30 Two methods of coordination are inhibition and suppression. Inhibition

is the prevention of the transmission of a signal, while suppression is the prevention of the

transmission of a signal and, at the same time, replacement of that signal with the suppressing

signal’s information. Figure 19 shows a simple subsumption structure that has been created for

the specific purpose of autonomous robots performing UMCM.

Figure 19: Subsumption architecture of a typical robot.

E
n
V

i
r
0

n
m
e
n
t

Avoiding ■_
F

Searching
'

^ 4
Gathering

i
_fs ̂ ,

^
1

Wandering
i '
1^- c Action

 41

From Figure 19, the decision structure of a robot is set up such that there is a hierarchy

that the robot uses to decide which behavior to implement at any given time. For instance, the

highest priority is to avoid an obstacle, followed by searching for objects, gathering with other

robots, and finally wandering around. These behaviors are dictated by the environmental

stimulus. The circles with a letter, s, represent the suppression mechanism at work. If the

sensors for a higher ranked behavior are fired, the suppressor will prevent all behaviors from the

lower ranks from being expressed. This allows the current behavior to be the only one expressed

at that point in time. Once those sensors stop detecting the stimulus, the robot reverts back to the

next lower behavior whose sensors pick up the next most important stimulus. Again, the result

of the subsumption architecture allows only one behavior to be expressed at a time; all other

lower behaviors are masked.

4.1 Previous Work

 Rodney Brooks from Massachusetts Institute of Technology (MIT) originally developed

the subsumption architecture. He proposed that different layers of behaviors could be set in a

hierarchy based on rules for performing specific tasks. This form of decision structure was

inspired by biology, as he realized that the actions of a robot could be separated and artificial

intelligence could emerge to build complex interactions with the environment. Several important

aspects that Dr Brooks focused on were the facts that the robots did not need an internal model as

was common in conventional methods, since the new architecture was able to deal with

imperfections from the physical world and did not rely on predicting or expecting information

that might not be available or easily modeled.31

 42

4.2 Relevance of Subsumption to UMCM

The study of the subsumption architecture was critical in generating a controller that can

be easily embedded into hardware controls, because of the presence of a rigid decision structure.

However, as the architecture does not specify how to generate individual behaviors, the

development of subsumption controls relied in the initial stages on generation of suitable

behaviors using a basis of APFs and motor schema (see Section 3). Even though the basic

building blocks are motor schema, the subsumption structure proved more flexible and robust as

a controller (due to the decision capabilities). Furthermore, embedding the motor schema

behaviors into the subsumption architecture created a more sophisticated behavior-based system

that duplicated the best characteristics of motor schema (when only one behavior was active)

while adding new capabilities. Finally, the controller still relied on behaviors that could be

modeled with differential equations, which was an important characteristic that was desired for

purposes of further hybridization, as will be discussed in Section 6.

The types of controls dramatically change from continuous in motor schema to a

switched controller in subsumption. Nevertheless, the robots were able to generate highly

reactive behaviors and performances that were not possible without these forms of control.

Therefore the robots were able to perform their tasks in an organized manner yet with total

unpredictability. These mine hunting robots are meant to be autonomous, hence the decision

structures were designed to be self-governing to allow the robots free reign based on the

environmental factors at that present moment.

 43

4.3 Subsumption Architecture for UMCM

Figure 20 shows the developed UMCM subsumption structure, which consists of the

various behaviors as created from the programs in motor schema, ‘Avoid_Mines,’

‘Avoid_Obstacles,’ and ‘Aggregation_Separation’ as well as the ‘Random_Search’ behavior

(used in a different context here). As shown above, behaviors were activated if the individual

distance calculated exceeded the requirements, suppressing lower behaviors.

Figure 20: Subsumption architecture of a mine-hunting robot.

Pseudocode below shows the basic algorithmic flow of the subsumption architecture.
For (number of robots)

(1 robot at a time)
If (distance of mine < d_Mine) %Avoid_mine

• Tag closest mine
• Repulse away from the mine

Else
 If (dist to obstacles < d_Obst)

• Repel from obstacles
Else
 If (distance to robots> d_x) %Avoid_Obstacles

• Do nothing
Elseif (distance to robots>d_y & distance to robots< d_x) % Aggregation

• Find centroid of robots
• Attractive vector towards common center

Elseif (distance to robots<d_y & distance to robots> 0)
• Repel away from other robots

Else %Random Search
• Random search for mine
• Follow pre-plotted waypoints

If muw_dbt< 0 3,
Avoid mmes

If obslade dist<0,3

Avoid Mines

Avoid Obstacles

■Ifrobot_dist<a 5, spread
■Ifrobot_dist<2 or>L,aggregate

Aggregation Si SepaiaUon

Random search paths

Ifrobot_dist>0.5, <LO/andom motion
along path

^

y^ I , Elesultant
^-^ Action

Suppressor can be if/else or case statements to call the function when
a specific sensory intbnnation is tnggered

Sensing loop will be continous running ID the set time domain

 44

From this pseudocode, the MATLAB simulation code was developed. It used simple if-

else statements to act as suppressive agents to create the hierarchy of the behaviors.

Furthermore, the presence of limits to activate certain behaviors was an accurate way to

represent the information being detected by sensors. If the level of the sensory information

exceeded that of the threshold value, the behavior would fire, at the same time suppressing all

other behaviors. The various codes that expressed behaviors used a form very similar to those

from the motor schema discussion (Section 3). MATLAB code can be found in Appendix F.

Several problems were encountered in coding the subsumption structure. The first was

finding a suitable suppressor element. After much contemplation, an if-else statement was the

simplest, most direct manner in which the suppressor could be implemented in code.

Furthermore, it proved a difficult task to combine various lines of codes from different behaviors

and link them to produce a combined, autonomous effect in an organized structure. However,

the use of velocity-based control vectors helped facilitate the application of the motor schema

behaviors to the creation of the subsumption architecture.

In fact, it is worth mentioning at this point that traditional behavior-based systems do not

lend themselves to simulation. Primary difficulties include the fact that most such architectures

do not involve equations of motion, but simply connect sensors to motors and allow the behavior

to ‘emerge.’ As such, it was necessary to develop velocity controllers based on APFs and motor

schema methods as a first step to building a subsumption architecture, as these methods can be

written to provide direct motion commands. Even so, simulation of switched systems, such as

subsumption-based methods, was nontrivial and required some care. As will be seen in the

 45

following section, it is this careful, systematic simulation development that led to the major

breakthrough of this work.

4.3.1 Subsumption Simulations

 The subsumption code for running a swarm of robots was modeled after the pseudocode

from the previous section (see Appendix G). In the background, at points where the robots

appear to change direction, lie the waypoints. The generation of such waypoints allowed the

user to generate a certain pattern of search for the mines using the robots (see Section 3.2.4.8).

As the robots approached the waypoints, the reduction in distance between the individual robots

and the waypoint was calculated and compared to a set limit. If the distance was less than the

given limit, then the waypoint was switched to the next one, allowing the robots to change

waypoints as they moved along the designated path.

The results of the simulation are given in Figure 21. As the robots moved along the

intended path, they tagged the mines (originally marked with +) with a diamond to indicate that

the position of the mine had been located (sensing radius for mine labeling was 1 unit). Ideally,

this information would be reported to a central unit to assess the threat of mines. The plot in

Figure 22 shows that the robots did not collide during the run.

 46

Figure 21: 3 robots performing UMCM under subsumption architecture

Figure 22: Plot of individual tracks for subsumption architecture

 47

 In these simulations, mine avoidance was of utmost priority, since a robot could be

destroyed if it ventured too close to a suspected mine. This behavior was adopted from motor

schema behavior, ‘Avoid_Mines.’ To limit the types of behaviors expressed when the robots

moved close to the mines, different sizes of sensing circles were created. A circle of radius 0.3

units around each mine simulated the region of sensitivity of the robots to the mines. A

significant characteristic of this behavior was embedded hysteresis. If the robot was inside the

inner radius, ‘Avoid_Mines’ was triggered. That behavior remained active until the robot moved

outside a larger, outer radius of 0.5 units. The zigzag and jagged response seen in Figure 21

exemplifies hysteresis. Once the robot moved out of outer circle, the robot would activate the

next higher behavior and continue with its movement.

The second most important behavior was to make the robots avoid the obstacles. This

was achieved by adopting the behavior, ‘Avoid_Obstacle.’ The robots had a separation distance

of 0.8 units to allow the robots to clear the obstacles. The observations from the code showed

that some randomization was important because it prevented the occurrence of local minima of

the potential fields theory found when a robot moved around an obstacle. Even so, the

randomization was limited because the robot had to follow certain waypoints and their individual

paths were generally moving towards the endpoints. Since only one behavior was expressed at

any one time, random motion for avoiding local minima was taken into consideration within

each individual behavior. Therefore, the robots were able to generate random motion under the

‘Random_Motion’ behavior as well as the ‘Avoid_Obstacle’ and ‘Avoid_Mine’ behaviors. This

was easily accomplished due to the underlying motor schema structure.

 The third significant behavior was the need to aggregate toward a common center while

avoiding each other robot. This behavior was adopted from the motor schema

 48

‘Aggregate_Separate.’ When the distance between robots was between 1 to 2 units, the robots

were too far away from each other. Hence the robots would aggregate, or move towards each

other to reduce the separation. If the separation was greater than 3 units, the behavior was

disregarded. This allowed the robots to peel off from the main group while performing

‘Avoid_Obstacle’. Thus, if a robot moved in the opposite direction from the rest of the swarm

around an obstacle, then the robot would be allowed to move randomly and perform

‘Random_Search’ in a new area. Furthermore, this behavior allowed the robots to have some

freedom to move around an obstacle individually without having to sacrifice the mobility of the

swarm to avoid the obstacle.

The aggregation behavior was supplemented with a separation component. If the

distance between a given robot and its nearest neighbor was less than 0.5 units, the robots would

repel from each other to increase the separation distance.

Due to the limits on triggering of the ‘Aggregate_Separate’ behavior, only when specific

values of the separation distance were met would the behaviors be triggered. As expected, this

resulted in inconsistent group aggregate shapes and formations.

 The last behavior was ‘Random_Search.’ This behavior occurred when the robot was not

performing any of the other behaviors. The robot would move, in general, towards a pre-

assigned waypoint. As it approached the waypoint, the movement was interjected with a lot of

noise, to enable the robot to move in a more random manner. When the distance to the current

waypoint became less than 0.1 units, the next waypoint was initiated and the robot swarm

proceeded to the next waypoint.

 49

4.4 Conclusions Drawn from Subsumption Architectures

 Several conclusions can be drawn about the performance of the subsumption architecture.

The subsumption architecture is a reactive system that allows the individual robots to behave

autonomously, using their own decision structure to pick the correct behavior to suit their

movement and the environment at a particular time. Furthermore, the subsumption approach

may reduce the computational strain on a microprocessor as a result of the lack of computational

complexity rising from a single point behavior at every instance in time. The suppressor agent,

in this case, the if-else statement, prevents any lower behavior from interacting or interfering

with the behaviors higher up in the hierarchy. Such controllers are easy to implement in actual

hardware, since there is a specific structure that the robot can base its action on instead of relying

on a diffused schema, where multiple behaviors are added together with a ‘hope for the best’

attitude. The subsumption architecture implicitly creates Artificial Intelligence (AI), since the

architecture makes decisions based on environmental feedback without a need for planning.

The presence of the suppressor adds to that effect with the fact that it generates a yes/no response

on different types of input, implicitly avoiding the sensor fusion problem (wherein difficulties

commonly arise when combining data from disparate sensors for a unified controller).

 Some problems encountered with the subsumption approach included difficulty in finding

a particular structure suitable for UMCM as well as having indeterminate overall systems

behaviors. There were no set architectures or design methodologies for how robots performing

UMCM should be created. The process of creating the architecture required more art than

science, since there was no one mathematical standard to generate that decision structure.

Hence, it took creative energy to generate a functional architecture.

 50

The indeterminate systems behavior arose from the fact that the robots’ responses to the

environment were highly reactive based on the information present at a specific point in time.

This unpredictability could be a disadvantage in real operations, since the operators would not

have complete understanding or control of the robot swarm. Additionally, it had been seen that

similar architectures used for modeling birds in flight and schools of fish suffer from chaotic

instability that is impossible to predict but simple to achieve.32 As such, the next facet of the

research was to investigate more systematic swarm control methods that admit some closed-form

analysis.

 51

5. Statistical Control

As mentioned, behavior-based and system-theoretic approaches to swarm control have

been studied extensively33. Behavior-based systems are flexible, easy to implement and do not

require a complete model or knowledge of the environment. System-theoretic methods are

commonly based on differential equations. Such systems have provable results with well-

understood analysis tools, and are sometimes controllable through the application of

compensators to give results that match desired specifications.34 The next phase of this project

focused on a systems-theoretic controller that was very promising for swarm control. The

controller selected was the so-called ‘statistical controller.’ Statistical controllers are designed to

manipulate the individual robots in a swarm to provably and robustly generate a desired swarm

profile and yet still allow the units some degree of autonomy.35

5.1 Introduction to Statistical Control

Statistical swarm control was investigated to determine its suitability for UMCM. Under

this systems-theoretic control methodology, swarm-level functions (such as overall mean

position and variance) can be controlled in a provable manner. Such swarm-level functions

dictate how a group of robots coordinates individual unit motion as the platoon transitions from

point A to point B.

Statistical control methods, a form of systems-theoretic control, have desirable

characteristics for the UMCM problem. Again, systems-theoretic control systems such as this

are typically based on differential equations, which make them well suited for simulation and

real implementation. Statistical controls can be run in real time, giving rise to fairly reactive

control by limiting the spread of the robots while at the same time allowing the robots to interact

 52

and move with some autonomy. Weaknesses of this method include rigidity in structure,

necessity for pre-planning of swarm paths and tasks, and an overall predictability (which is an

advantage for stability but a disadvantage for reactive searching). The statistical control

architecture is well suited to simulation study, since the mean and variance of the spread of the

positions of the swarm of robots can be observed and calculated directly from the simulation

with ease.

5.2 Applications to UMCM

 Statistical methods have the capability to coordinate the motions of each robot in a swarm

without having to plan their individual paths and motions in advance (which is a computationally

complex problem for large swarms). These controllers also allow certain secondary tasks to be

encoded in such a way as to be carried out only when not interfering with the primary (swarm-

level) tasks. These characteristics are truly beneficial to UMCM. The robots are free to roam or

move in a designated area while maintaining a particular distribution limited by restrictions

placed on the swarm. In addition, these controllers admit simple reconfiguration of primary and

secondary tasks, which enhances the multi-tasking capability of the robot swarm.

5.3 Previous Work

 Professor Bishop from the United States Naval Academy pioneered the theory of

statistical controller. He has since worked with Professor Stilwell of Virginia Tech. They have

developed a comprehensive statistical controller for swarming robots, but have not developed

any task-specific implementations, such as for UMCM. In the next few sections, the basics of

this control are discussed, followed by a design for the UMCM problem.

 53

5.4 Fundamentals of Statistical Control

Statistical methods control swarm-level functions, such as mean and variance of the

positions of the robots, which in turn restrict the movements of a swarm as a whole.36 The

individual task objective of each robot remains unchanged… determining the location of the

mines and avoiding obstacles. The swarm, as a collective entity, obeys some desired function

profile by coordinating the motion of the robots.

 This approach involves using a special matrix, known as a Jacobian, that allows the

calculation of the best velocity profile for the robots according to the set limits of the

performance of the swarm. Jacobian matrices are typically applied in traditional robotics to

relate joint velocity to end-effector (tool) velocity.37 A Jacobian matrix is defined by the state q

of the system and some task function f(q). Denoted J (q), the Jacobian is given by:

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

∂
∂

∂
∂

∂
∂

∂
∂

=

n

mm

n

q

qf

q

qf

q

qf

q

qf

qJ

)(
..

)(
.

.

)(
..

)(

)(

1

1

1

1

 (1)

where the state q is n dimensional, the task function f(q) is m dimensional, and

qqJqf ��)()(= .38

In a statistical controller, f(q) represents the swarm task function, which can be any

closed-form, differentiable function of the swarm state, which is typically given by the

concatenation of the individual units’ positions. In this work, the state vector for an r unit swarm

in 2D was taken to be q = [x1, x2, … , xr, y1, y2, … , yr]
T . An example of a task function f(q),

using swarm mean and variance, is given by39:

 54

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−
−

−
−=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

�

�

�

�

+=

+=

=

=

r

ri yi

r

ri i

r

i xi

r

i i

y

y

x

x

q
r

q
r

q
r

q
r

qf

2

1

2

2

1

1

2

1

2

2

)(
2

1

1

)(
2

1

1

)(

µ

µ

σ
µ
σ
µ

 (2)

In this simple example, the mean (�
x,

�
y) effectively determines the overall swarm position while

the variance (σx
2 , σy

2) dictates the spread of the elements. The Jacobian for the task vector

given by (2) is shown in (3), (4) and (5)40:

0
[]

0
x

y

J
J

J
= (3)

1

1 1
. . .

2 2
() . . . ()

1 1

x

x r x

r rJ

q q
r r

µ µ

� �
� �

= � �
� �− −
� �� − − �

 (4)

1 2

1 1
. . .

2 2
() . . . ()

1 1

y

r x r x

r rJ

q q
r r

µ µ+

� �
� �

= � �
� �− −
� �� − − �

 (5)

5.5. Components of the Statistical Controller

 The statistical controller as seen in Figure 23 is fundamentally a basic closed-loop

feedback control system. Using standard methods from feedback control allows the system to

reach the desired values of the swarm functions f(q) at equilibrium. The proportional (gain)

controller brings the swarm to the desired f(q) while the null space controller (discussed below)

moves the robots in such a way that there are no collisions.

 55

Figure 23: Diagram of a statistical controller

 The f(q) that was used in the simulations performed for this part of the research included

the mean and variance of the swarm in the x and y direction, as indicated in (2). The task-space

controller and the Jacobian pseudoinverse continually computed the error and compensated the

system so that the swarm followed a preferred path, moving along different waypoints defined

by the user. The swarm was ordered to move from point to point while each robot performed its

mission of searching for mines and avoiding both mines and obstacles. Each facet of the control

will be described in the subsequent section.

5.5.1 Task-Space Control

Task-space control is a common method for systems that rely on Jacobians to convert

from one coordinate space to another. A controller is designed in the space defined by the task

(here, the mean and variance of the platoon). This control generates desired velocities in the task

 56

space (here, yx µµ �� , , etc.) The Jacobian is then used to convert those desired task-space velocities

to the state space of the system (here, the velocities of each swarm unit).

A proportional controller was used for the task-space component of this system because it

is a basic compensator intended to track a desired differentiable trajectory, and because it was

easy to implement in the system. The controller uses a gain value, K, to magnify the error

between the desired and actual swarm state and to compensate for that error. The compensated

system shows improved stability over behavior-based approaches, as it measures error and forces

the response to the desired equilibrium. This basic gain controller is described by (6). Figure 24

depicts the controller in a standard closed feedback loop.

 C=K* e (k) (6)

Figure 24: Proportional gain control

In the simulations performed, e(k) was the error calculated between the desired and the

actual values of the swarm level functions after every iteration of the control code. K was the

control gain that was used to adjust the transient performance of the controller. The error

feedback and the feedforward velocity)(qf d� (based on planned swarm trajectories) guaranteed

perfect tracking of the desired swarm profile in the absence of disturbances (which are addressed

in section 6.2.1).

 57

5.5.2 Jacobian Pseudoinverse

The task space controller computes desired velocities for the platoon, but the actual

control occurs at the unit level, in state space. The swarm state-space velocity q� represents the

motion of the swarm at every instant in time. For a large swarm of robots, the number of state

variables (x and y for each robot) is typically much greater than the number of task variables

(swarm mean position and variance in each dimension, for example). This redundancy creates

an infinite number of possible configurations for the swarm while still achieving the desired

profile.41 The basic control that achieves this task takes the following form:

))())()(((qfqfqfKJq dd �� +−= + (7)

 1)(−+ = TT JJJJ (8)

where the parenthetical component of (7) is the task-space controller and J+ is the so-called

Moore-Penrose pseudoinverse of the Jacobian, which is defined by (1) and (2) for this problem.

The pseudoinverse is used because the Jacobian for a large swarm is non-square and thus not

directly invertible. The application of the pseudoinverse of the Jacobian allows the task-space

controller to be converted to a state-space controller, generating motion commands for the units

based on the task-space error.

5.5.3 Null Space Control

Since the proposed solution for the problem of UMCM is to use numerous robots to

maximize capability, the swarm will inherit redundancy qualities. The swarm has more

members than objective functions that need to be met. Therefore, there are more capabilities

present than would be utilized by the pseudoinverse controller of (7)-(8). Effectively, there are an

infinite number of configurations for the units to satisfy the desired task-space functions.

 58

Redundancy resolution, taken from redundant manipulator control, is employed to manage

swarm resources and functions by moving the swarm along the self-motion manifold (the set of

all configurations that match the desired f(q)) toward a locally desirable configuration. In this

implementation, additional tasks, beyond the coded functions of f(q), are projected onto the null

space of the Jacobian J(q), meaning that those tasks are carried out in such a manner as to leave

the primary objectives encoded in f(q) unchanged.

For a UMCM problem, primary tasks are maintaining the mean and variance while the

secondary objectives are to avoid obstacles and mines. A Jacobian null space projection term (I-

J+J)v basically allows such a swarm to compute appropriate velocities of the robots for achieving

secondary objectives given by velocity vectors v while maintaining the primary tasks defined by

f(q). Although this does not make each robot fully autonomous, individual units may react to the

environment in a constrained manner. In simple terms, when one robot must react to an

environmental stimulus and therefore be deflected from the nominal velocity provided by (7)-(8),

the entire swarm reacts as a whole to guarantee that the primary task f(q) is still achieved. In

certain cases, the response of the units is limited by the primary tasks. On the other hand, the

swarm as a whole acts as an autonomous system.42 It is possible to decentralize certain tasks

under this form of control, making the units fully autonomous, although the distinction can be

misleading.43

 Gradient projection methods are employed to achieve the null space control. A

redundancy-resolution controller is shown in (9), where)(JJI +− is the projection term. This

projection operator can be thought of as a driver that forces the robot swarm to coordinate

motion to accommodate secondary objectives.44 The secondary objectives are encoded in the

vector v, which is often a gradient of an objective function c(q) given by qqc ∂∂ /)(. The

 59

secondary objectives as encoded in v are always state-space velocities, although they may arise

from the gradient of a task vector.

 vJJIqfqfqfKJq dd)())())()(((++ −++−= �� (9)

5.5.4 Task Arbiter

Specific secondary tasks for the null-space control are embedded in the functional block

labeled Task Arbiter so that the robots are able to perform some secondary tasks while moving as

a swarm. The design of the Task Arbiter, which represents v, required that the tasks be written in

differential equation form for interface with the null-space projection (which requires velocity

vectors). An important note to make at this point is that the velocity-based secondary task can be

anything that is in the form of differential equations that describe tasks that are also velocity

based.

The only secondary task defined for this controller was obstacle avoidance. The obstacle

avoidance task was encoded in exactly the same form as the ‘Avoid_Obstacle’ behavior from

Sections 3 and 4, with the exception that the repulsive vectors for every robot were concatenated

to form v.

 In conclusion, the combination of the different components gave rise to a statistical

controller that was capable of regulating swarm-level functions while simultaneously

accomplishing secondary tasks defined as state-space velocity terms. These secondary tasks

proved to be the key to combining systems-theoretic and behavior-based controllers.

 60

 5.6 Statistical Simulations

The previous section on the fundamentals of statistical control discussed the theory on

which the swarm controller was based. This section demonstrates the implementation of control

characteristics for UMCM.

The robot swarm in these simulations used waypoints to guide its movement, moving in a

specified path designated by the user. Given desired points and time intervals, the planned path

trajectories were projected based on the cubic polynomial of the time in each task coordinate, µx,

µy, σx
2
, σy

2. The initial starting point and the next waypoint were used to derive the initial

trajectories. The mean position of the robot swarm was required to fall along the planned

trajectory to prove that the task space controller was able to keep the mean and variance of the

system.

As the swarm moved along the designated path, singularities in the Jacobian, (3), did not

occur. A singularity for this controller could only occur when the units form a straight line along

the x or y direction, which cannot occur unless the commanded variance in one direction is set to

zero.

The primary task of the statistical controller performing UMCM was to control the task

variables, which were the mean and variance of the swarm. The secondary task in this

simulation of the system was purely obstacle avoidance. These robots were meant to mimic the

motions of actual AUVs and UUVs, and the most fundamental action was avoiding obstacles at

all costs.

The simulations for the statistical method were written without showing extensive

obstacles unlike the simulations in the behavior-based simulations because of the computational

 61

complexity of the calculations and the difficulty in simulating switched controllers of this sort.

For simplicity, the obstacles were shown as circular objects.

5.6.1 Simulation Results of Statistical Controller

 One of the first considerations for running the simulation was to determine the number of

robots simulated. The swarm of robots was required to satisfy 4 task variables, the mean and

variance of the positions in the x and y-plane. The minimum number of units for redundancy

was therefore three (each unit possessing, in our simplified environment, two DOF). The two

redundant degrees of freedom enabled the robots to move with some flexibility, but it did not

allow them to avoid obstacles or mines easily. Obstacle or mine avoidance demanded more

degrees of freedom from the system to allow the robot swarm to react and adapt to the changing

environment. Therefore, the number of robots was raised to six, providing eight degrees of

redundancy and very good swarm flexibility.

 Three waypoints were set in this simulation to allow the robots to move from an initial

point to a final point. The robot swarm also displayed its ability to avoid obstacles and move

towards targets as instructed in the task arbiter. The null-space controller compensated and

counterbalanced the movements of the robots to allow them to adhere to the set mean and

variances.

 62

Figure 25: Plot of the motion of a robot swarm

Figure 26: Plot of actual and desired mean and variance of statistical control

 63

 The swarm of 6 robots moving through the sequence of waypoints is shown in Figure 25.

The squares represent the robots’ position at each moment in time. The robots were observed to

perform simple obstacle and mine avoidance tasks. The majority of the robots in the swarm

clumped together and moved in a similar linear formation while a single robot moved away to

ensure that the swarm maintained the desired mean and variance. This result shows that the

statistical controller did not perform other tasks, such as inter-robot repulsion or random motion,

which are highly regarded in autonomous robotic motion.

Figure 26 shows the desired (solid) and actual (dashed) mean and variance of the platoon

over the simulation. The actual and desired mean and variance of the robot swarm remained the

same with minor disparities of value 0.01. These disparities represent simple numerical

simulation effects. Code can be found in Appendix H and I.

5.6.2 Conclusions

 The results of the simulation show that the robot swarm had poor coverage of the area it

was searching, and also had poor secondary task capabilities. The main focus of the robots was

to maintain the mean and variance while performing obstacle avoidance. Although the robots

kept to the projected trajectory of the swarm, they showed little individuality or autonomy when

moving independently. Five out of the six robots present displayed similar path characteristics

that did not contribute to maximize the search area. Thus, each robot in the swarm needed to

have more autonomy to move around based on its surroundings, while at the same time staying

within the area designated by the swarm task space control.

 64

5.7 Important Discovery

An important observation was made regarding this controller. The behaviors designed in

Sections 3 and 4 return velocity commands to the swarm elements, and were written in terms of

differential equations. The statistical controller relies on secondary tasks encoded as velocity

commands. Thus, the possibility of combining the controllers together became obvious. The

velocity-based behaviors can be included in the v that defines secondary objectives, while the

motion and spread of the platoon are controlled in a provable manner. Such a combination of the

systems-theoretic and behavior-based approaches ultimately gave rise to a new hybrid controller

with much greater functionality than either of the original controllers, as the individual

characteristics of the two schemes were combined to provide some of the best qualities of each

without the associated drawbacks.

 65

6. Hybrid Controllers

6.1 Reasons for Hybrid Control

Based on the results from the behavior-based and statistical controllers, some conclusions

were drawn. Behavior-based systems were seen to be highly reactive while requiring little

computation, even when controlling a large number of robots (since such systems tend to be

decentralized). Unfortunately, as exemplified by the behavior-based approaches shown in

Sections 3 and 4, coordination and control of a group of robots using only decentralized APFs

was not practical, nor an especially effective use of the swarm capabilities. Although using the

centroid as a center of mass for the swarm to calculate aggregation potentials makes sense, the

resultant formation for a large number of robots tended to be concentric, with no specific

structure. In fact, for small platoons in open water, the configuration resembled the vertices of a

regular polygon. These behaviors were characteristic of the use of inter-robot repulsion as well

as attraction to the centroid. Unfortunately, this result served no real purpose for UMCM; it

effectively constrains the platoon to a loose conglomeration formation, influenced strongly by

the environment and the parameters of the controller.

In the tested behavior-based systems, there was neither feedback control to ensure that

the swarm was capable of reaching desired swarm specifications, nor even any guarantee of

stability. While simple combinations of repulsive and attractive forces may work for a small

swarms of robots such as those simulated in Sections 3 and 4, such controllers may not prove

effective if the number of units employed is in the hundreds. This is because there is no real

coordination between robots except through simple local reaction. Due to this, behavior-based

controllers for large swarms of simulated animals have been seen to suffer from stability

problems.45

 66

System-theoretic methods, on the other hand, have provable performance, being designed

from the standpoint of stability analysis. An analysis of the statistical controller indicated that

even though it had great swarm level control capabilities, the controller lacked capacity to

introduce intelligence to the system. The robots under statistical control revealed that they

lacked the ability to make decisions based on their surroundings. Subsumption, on the other

hand, showed remarkable performance in directing the robots to avoid obstacles, making

decisions instantaneously. Therefore it made sense to try to combine these two methods into a

hybrid that would not only grant autonomy for each robot to move around but also constrain the

motion of the swarm as a whole using swarm-level functions. The discussion in Section 5 has

shown that the statistical controllers are capable of being combined with behavior-based

controllers. The task arbiter, used in statistical swarm control was determined to be favorable for

inserting velocity-based behaviors under the motor schema and subsumption architectures.

Figure 27 summarizes the comparisons of the controllers.

Figure 27: Table of comparison of the controllers

The combination of two structurally different controllers resulted in a hybrid that is

incredibly robust, with much better performance than the original controllers. The remainder of

this section is devoted to development of this new controller and its capabilities.

 67

6.2 Structure of Hybrid Controller

6.2.1 Hybrid Controller Combining Subsumption with Statistical Method

 The simulations in this section show how the statistical and subsumption controllers were

combined to result in a hybrid controller. The change made to the statistical controller was

minimal; the task arbiter block was converted to a behavior arbiter. The behavior arbiter block

was where the subsumption architecture was embedded. Figure 28 shows the structure of the

hybrid controller while Figure 29 shows the internal organization of the behavior arbiter.

Figure 28: Hybrid controller block diagram

 68

Figure 29: Behavior arbiter block embedded with subsumption

 The behavior arbiter in Figure 29 shows that, within the block, there was a subsumption

architecture for each robot. That architecture controlled the secondary tasks for the robot

through a decision making process. The subsumption architecture was similar to the one

developed in the behavior-based section in section 4.3 and had the same behaviors programmed

for UMCM as seen in Figure 20. It was ordered as such: the highest behavior in the hierarchy is

mine avoidance followed by obstacle avoidance, aggregation, separation and then random

motion. The stimuli for activating specific behavior in the hierarchy were still based on

calculations of ranges from the robot to another robot, obstacle or mine. The robots in the

simulation were assumed to be able to receive range information to an obstacle similar to real

implementation using sensors, which would give relevant ranging information when an obstacle

is discovered.

Behavior Arbiter Blocl< To Null Space Projection Block

f B1

B2

B3

B4

^

-4

B1

B2

B3

B4

^

-4
Robot 1 Robot 2

Swarm Level Functions

 69

 Additionally, the limit function in the behavior arbiter block effectively prevented all the

robots from reacting to the environment at the same time, thereby overtaxing the system. It

limited the number of robots attempting ‘Random_Search’, the lowest-level behavior in the

subsumption architecture. If there were more than three robots with active behaviors, the

remaining robots only implemented behaviors of higher priority than ‘Random_Search.’ This

was a simple method of resource planning intended to minimize the impact of random motion on

obstacle avoidance of other units by not competing for the ‘redundant’ degrees of freedom. The

behavior arbiter block sent the expressed behavior for each robot to the null-space projection

block where calculations were done to move each robot to the best position to satisfy the null-

space and task space variable conditions.

6.2.2 Simulation Results

 The simulation result for the hybrid controller is shown in Figure 30. The robots

performed obstacle, mine and robot avoidance as they moved along the desired trajectory. The

coverage of the swarm dramatically improved compared to the simulation results of the

statistical controller alone. The improved dispersion of the trajectories taken by each robot is

evident from the plots. The randomness was indicative of the inherent decision making

processes in the controller. The decisions made by each robot were different based on its

position and environmental factors present. The paths around the obstacle were also distinctive

of the decision process. When a robot was close to an obstacle, it repelled away from it in

response. At the next iteration, once again, each robot had to decide on what environmental

factors were important enough to be considered. If the robot was not repelled far enough to be

out of the obstacle or mine range, it continued with obstacle or mine avoidance. However, if the

 70

robot escaped the repulsion range of the obstacle or mine, it then decided what other behavior to

express. This zigzag motion, known as hysteresis, around the obstacle demonstrated the decision

process that the robots actively engaged in on an individual level.

Figure 30: Plot of motion of robot swarm with hybrid control

Figure 31: Plot of mean and variance in X and Y with hybrid control

 71

 Even though each robot moved in accordance with the environmental changes, the robots

were still able to maintain the mean and variance of the swarm. The plots in Figure 31 show the

plot of the mean and variance in the X and Y directions. The desired and actual mean and

variance of the swarm were very similar with minute errors, again due to computation limits.

This result demonstrated the flexibility of the hybrid controller to have different robot units

behave in ways to suit the individual’s situation as well as satisfying the swarm’s requirement.

MATLAB codes can be found in Appendix J and K.

6.2.3 Conclusions

 From Figures 30 and 31, it was concluded that the hybrid controller performed as

expected, tracking the desired swarm mean and variance. While the task-space controller

satisfied the swarm-level functions, the null-space controller clearly took into account the

decisions made by individual robots, providing substantially increased unit autonomy and better

overall area coverage than the statistical controller alone.

6.3 Hybrid Controller with Disturbances

 Although the hybrid controller worked well for the initial simulation, the performance of

the controller in more complex situations was still unknown. The next simulation carried out

attempted to investigate the behavior of the hybrid controller when the environment became

more complex. This was accomplished by the addition of a simple drift term intended to model a

current field. The drift in a real underwater environment is highly variable and unpredictable,

hence any controller to be used in such an environment would require a large degree of

robustness and flexibility so that it could react and compensate for the external disturbance.

 72

Figure 32 shows the addition of an environmental disturbance block to the block diagram for the

hybrid controller while Figure 33 illustrates the simulated drift currents.

Figure 32: Hybrid controller block diagram with environmental disturbance

Figure 33: Vector field depicting a drift current

 73

 The non-uniform vector arrows in the above field plot represented the drift current that

would be expected in an undersea environment. The individual vector field arrows in the

simulation denote the direction of the current flowing at a given point. Unlike a real drift current

with laminar flow, the direction of flow at different points in the simulated current field varied

discretely across the space. This flow field represented an extremely challenging sample so that

it was possible to test the limits of the capabilities of the swarm. The simulated current

(environmental disturbance) was added to the commanded velocity of each robot in the robot

swarm, based on its location, at each iteration of the simulation.

Figure 34: Plot of swarming robots with hybrid control in a drift current

 74

 Figure 34 illustrates the motion of the robots as they move along the same designated

path as in the simulations from Section 5.6.1. Different from the initial simulation, it was

observed that the robots were pushed away in the direction of the current and were not able to

counteract the effects of the additional drift currents. Since the flow field moved from left to

right, the error in the mean and variance in the x direction was higher. Figure 35 shows how the

addition of the environmental disturbance affected the mean and variance control. It is worth

noting that the error seen in these plots could be somewhat reduced by increasing the

proportional gain. Even though the robot swarm did not match the desired trajectory exactly, it

still followed the general form of the desired motion and fulfilled individual task requirements,

avoiding collisions with surrounding objects and fellow robots. MATLAB codes can be found in

Appendix L and M.

Figure 35: Plot of mean and variance of a hybrid controller in a drift current

 75

6.3.1 Conclusions

 The swarm was not successful in achieving the desired task function f(q) when faced with

simulated drift current. The robots were dispersed outwards, away from the desired mean with

the actual mean being consistently higher, which was expected based on the drift current. The

variance, on the other hand, was very poorly controlled. The swarm task space controller failed

to satisfactorily limit the position of the robots based on the variance. The addition of the

external stimulus demonstrated a weakness of the controller. Fortunately, the systems-theoretic

nature of the primary task controller led to an improved implementation using standard tools of

feedback control design.

6.4 Hybrid Controller with Vector Compensation

 Based on the results of Section 6.2, the hybrid controller was altered to take into account

the environmental errors present. A task-space error integration block was added to the hybrid

controller to compensate for the error produced between the desired and actual position of the

mean and variance. The addition of the integrated error enables the hybrid controller to slowly,

over time, compensate for the influence of the vector field. Figure 36 shows where the error

integration block was added into the hybrid controller.

 76

Figure 36: Block diagram of a hybrid controller with vector compensation

Figure 37 demonstrates the effect of including the task-space error integration block,

which effectively removed the error as seen in Figure 38. Although the paths of the swarm

elements were not clearly ‘better’ than those of the simulation without the integral term, the

calculation of the desired and actual mean and variance of the robot swarm in Figure 37 showed

significant improvement in tracking the desired task function. The integral control dramatically

improved the mean tracking characteristics. The variance control, while not as clean as the

mean, still effectively improved performance by decreasing the maximum error from the desired

variances. A direct comparison of mean-squared error over the trajectory would be misleading,

as the paths of the units passed through different vector fields throughout the two simulations.

The difficulty in maintaining the variance of the swarm was due to the effect of the

varying drift factors. The vector field was set up such that it changes spatially as the robots

reach different positions. Nevertheless, the simulations showed that a hybrid controller with

 77

vector compensation works much better since the controllers adapted the motion of each robot to

suit the objectives of the swarm. In this case, the swarm level objectives were not compromised

while the task objectives were being achieved. MATLAB codes can be found in Appendix N and

O.

Figure 37: Plot of swarming robots with hybrid control and vector compensation

 78

Figure 38: Tracking errors for a hybrid controller with vector compensation

6.4.1 Conclusions

 The new hybrid controller showed greater versatility and robustness when it was

modified to include the task-space error integration block that corrected for the addition of the

vector fields in the system. The new hybrid controller therefore has both quantitative and

qualitative improvements over its parent controllers; it has error rejection for improved

robustness, decision-making capabilities to give the robots enhanced artificial intelligence for

potentially better swarm usage, and the ability to regulate swarm-level functions of the platoon

state. No other controller has all of these capabilities.

 79

7. Summary of findings

 This project has effectively and thoroughly studied two specific types of control

methodologies for a swarm of robots performing underwater UMCM. The behavior-based

methods showed their strengths and limitations in the earlier sections in the research. Behavior-

based systems are highly flexible and robust systems, as they need not have a lot of specific

information about the surroundings they are in. They only require real-time sensor data to

trigger individual behaviors. The motor schema approach was effective for controlling the

motion of the individual robots within a swarm, but lacked flexibility or any provable stability

due to its lack of a feedback controller to regulate the performance of the system. Subsumption,

on the other hand, showed poor aptitude for swarm control. On an individual member level, the

subsumption structure gave each robot a nominal amount of artificial intelligence for it to carry

out its tasks. Each robot in the swarm was able to decide what the next behavior or task it should

perform was, based on environmental information alone. As a result, each individual robot

moved in a distinct path, different from its neighboring robots. Thus, the swarm lacked

coordination except on the most basic level (collision avoidance).

 Statistical control was the systems-theoretic controller that was investigated. Statistical

control uses classical control methods combined with techniques from redundant manipulator

control to determine motion commands for each member in a robot swarm. The original

statistical controller was able to move the swarm effectively; following a desired task-space

trajectory defined by swarm mean and swarm variance. Although the robot swarm avoided

obstacles while it moved from waypoint to waypoint, it did not show intelligence in deciding

what path it was taking. Effectively, the redundancy of the swarm was not well used.

 80

 A qualitative comparison of the 3 methods indicates that motor schema showed the least

potential because it neither produced good provable performance nor demonstrated good robot

intelligence or a decision-making structure. Subsumption proved its versatility in handling the

individual robots through its decision-making capabilities, but showed a weakness in swarm

coordination. The statistical controller demonstrated good performance, but lacked the artificial

intelligence required for the autonomous agents to work well in an underwater environment.

Therefore, it made sense that a hybrid between the statistical controller and subsumption

architecture could result in a more robust system that could handle the demands of UMCM.

 In the process of developing the analysis simulations, an important link was made

between two methods. The statistical controller used differential equations to represent

secondary tasks to be carried out. The possibility of hybridizing subsumption and statistical

methods was immediately recognized since the subsumption codes, already written in differential

equations, could be embedded into the statistical controller codes to generate a hybrid. Creating

a hybrid controller meant that the product would be highly versatile in an unknown environment

while still being able to meet provable performance demands. Furthermore, the ability to make

decisions in an unknown environment was seen to be critical for improved performance in real-

world situations.

 The creation of the hybrid controller proved to be successful. The resultant controller

demonstrated the best characteristics of its parent controllers, satisfying the individual behavior-

based tasks as well as regulating swarm level functions while still requiring only minimal

planning. The subsumption architecture allowed the swarm to make decisions based on the

simulated environment and as a result, gave rise to emergent, indeterministic paths. The

 81

statistical controller framework enabled the swarm to track the desired mean and variance

trajectories.

A weakness of the hybrid system was observed in the testing phase, when drift factors

were added into the simulation. Under these disturbances, the hybrid controller was incapable of

regulating swarm mean and variance, although the system remained stable and still carried out

the mission.

To compensate for the difficulty of the hybrid controller with regards to drift vectors (and

any other velocity disturbances), a task-space error integration block was added to the hybrid

controller. The compensated system was able to overcome the effects of the external drift

factors.

 In closing, this project involved the investigation of three distinct techniques for swarm

control of robots in the UMCM domain. The simulations shown in this research demonstrated

numerous features, including the strengths and weaknesses of the various swarm control

techniques. A hybrid controller with qualitative and quantitative improvements over the parent

controllers was also created. The investigative portion of this project should serve as a good

overview for future work on a real-world implementation of swarm controllers for underwater,

surface or land multi-agent controls. Further, the new hybrid controller represents an important

contribution to the field of robot swarm control, as it combines systems-theoretic and behavior-

based methods into a cohesive framework.

 82

Endnotes
1 T. Balch and R. Arkin. “Communication in Reactive Multi-Agent Robotic Systems,” Autonomous Robots, 1(1):
27-52, 1994.
2 X.Yun. “Line and Circle Formation of Distributed Physical Mobile Robots.” Journal of Robotic Systems, 14(2):
63-81, 1997.
3J. Jablonski and J. Posey, “Robotics Terminology,” Handbook of Industrial Robotics, ed. S. No, J. Wiley, New
York, Pg 1271-1303, 1985
4 Arkin, “Whence Behavior?” Behavior-Based Robotics. Massachusetts: MIT Press, 1998. Pg 2.
5 Lueth, Dllman, Dario, and Worn, Distributed Autonomous Robotic Systems 3, Germany, Springer, 1998.
6 Arkin, “Behavior-Based Architectures,” pg 127.
7 Ibid, pg 128.
8 Arkin “Robot Behavior,” pg 66.
9 R. Smith, “Adaptive Robotics- Behavior-Based Robotics” 12 May 2003.
http://www.inel.gov/adaptiverobotics/behaviorbasedrobotics/
10 Arbib, “Schema Theory,” in the Encyclopedia of Artificial intelligence, 2nd Edition, Ed S. Shapiro, Wiley-
Interscience, New York, N.Y. pp 1427-43.
11 Arbib, “ Perceptual Structures and Distributed Motor Control,” in Handbook of Physiology- The Nervous System
II: Motor Control, Ed V.B. Brooks, American Physiological Society, Bethesda, MD, pp 1449-80, 1981; Arkin pg
141.
12 Arkin R. “Motor Schema Based Navigation for a Mobile Robot, an Approach to Programming by Behavior,” in
IEEE Proc. Robotics and Automation, pg. 264 -271, 1987.
13 Arkin pg 131, 1987 “Motor Schema Theory Based Navigation,” Behavior-Based Robotics, pg 142.
14 Arkin “Behavior-Based Architectures,” pg 131.
15 Ibid, pg 145-155.
16 Ibid, pg 144.
17 R. Arkin, “Motor Schema Based Navigation for a Mobile Robot, an Approach to Programming by Behavior,” in
IEEE Proc. Robotics and Automation, pg 264-271, 1987.
18 R. Arkin, Behavior-Based Robotics. Cambridge, MA: MIT Press, 1998
19 J.A. Piepmeier and P.A. Morgan. “Uncalibrated Vision–Based Control of Two-Wheeled Mobile Robots.” In Proc.
International Mechanical Engineering Conference and Exposition, CDROM, New York, NY, 2001.
20 Arkin, “Behavior-based Architectures”, pg 14-27.
21 Ibid, pg 150.
22 B.E. Bishop, Artificial Potential Fields Programs: Repulse.m, Obst.m.
23 Arkin, “Behavior-Based Architectures,” pg 151-155.
24 D.J. Montana, D.L. Brock, A.Z. Ceranowicz, “Coordination and Control of Multiple Autonomous Vehicles,” in
Proc. IEEE International Conference on Robotics and Automation (Nice, France), pg 2725- 2730, 1992.
25 P. Hsu, J. Hauser and S. Sastry, "Dynamic Control of Redundant Manipulators," in Proc. IEEE Int'l Conference
on Robotics and Automation, 1998, pp.183-187.
26 ‘Parallel SAR Pattern.’ Virtual U.S. Coast Guard Webpage. 21 March 2004. 24 March 2004. < http://vuscg.org/>
27 Arkin “Behavior-Based Architectures,” pg 131.
28 “Modular Robots,” About AI. 04 April 2000. 06 April 2004.
<http://www.aboutai.net/DesktopDefault.aspx?tabindex=1&tabid=2&article=aa040400a.htm >
29 H. Van Dyke Parunak, “Applications of Distributed Artificial Intelligence in Industry,” Foundations of
Distributed Artificial Intelligence. Wiley Inter-Science, Chapter 4, 1994.
http://www.erim.org/~vparunak/jennings.pdf
30 Ibid, pg 135.
31 Brooks, R.A."How to Build Complete Creatures Rather Than Isolated Cognitive Simulators," in K. VanLehn
(ed.), Architectures for Intelligence, pp. 225-239, Lawrence Erlbaum Assosiates, Hillsdale, NJ, 1991,
http://ai.eecs.umich.edu/cogarch3/Brooks/Brooks_RealWorld.html
32C. Reynolds, Boids, 6 Sept 2001,16 Nov 2003 http://www.red3d.com/cwr/boids/
33 D.J. Stilwell, B.E. Bishop,” Redundant Manipulator Techniques for Path Planning and Control of a Platoon of
Autonomous Vehicles,” IEEE Conference for Decision and Control (Virginia, USA), pg 2093 -2098, 2002.
34 N. Nise, Control Systems Engineering, Third Edition, John Wiley & Sons Inc. pg 2-5.

 83

35 B.E. Bishop, “On the Use of Redundant Manipulator Techniques for Control of Platoons of Cooperating Robotic
Vehicles,” IEEE Transactions: Systems, Man and Cybernetics, pg 608-615, 2003.
36 Ibid, pg 608.
37 S.B Niku. “Jacobian,” Introduction to Robotics: Analysis, Systems, Applications. New Jersey: Prentice Hall. pg
97-99
38 Bishop, “On Use of Redundant Manipulator Techniques.” pg 608-609.
39 Ibid, pg 609.
40 Ibid, pg 609.
41 Ibid, pg 609.
42 B.E. Bishop, “Redundant Manipulators Analogs in Robot Swarm Control.” Presentation to Drexel University, 11
Jan 02.
43 Stilwell, Bishop, “A Strategy for Controlling Autonomous Robot Platoons.” In Proc. 39th Conference of Decision
and Control. Sydney, Australia. 2000.
44 Bishop, “On use of Redundant Manipulator Techniques.” pg 609.
45 C. Reynolds, Boids, 6 Sept 2001,24 March 2004. http://www.red3d.com/cwr/boids/

 84

8. References

[1] G. Dudek, M. Jenkin, E. Milios and D. Wilkes, “A Taxonomy for Swarm
 Robots,” in Proc. IEEE International Conference on Intelligent Robots and
 Systems, (Yokohama, Japan), pg 441-447, 1993.

[2] D.J. Montana, D.L. Brock, A.Z. Ceranowicz, “Coordination and Control of
 Multiple Autonomous Vehicles,” in Proc. IEEE International Conference on
 Robotics and Automation (Nice, France), pg 2725- 2730, 1992.

[3] R. Cassinis, G. Banco, A Cavagnini and P. Ransenigo, “Strategies for Navigation
 of Robot Swarms to be Used in Landmines Detection,”�in Advanced Mobile
 Robots, (Zurich, Switzerland), pg 211-218, 1999.�

[4] X. Zheng, “Layered Control of a Practical AUV,” ISE Research Ltd

[5] G. Bruzzone, R. Bono, M. Caccia, G. Veruggio, “ A Simulation Environment for
 Unmanned Underwater Vehicles Development,” in OCEANS, MTS/IEEE
 Conference and Exhibition (Honolulu, HI, USA), pg 1066- 1072, 2001.

[6] R. Arkin, Behavior-Based Robotics. Cambridge, MA: MIT Press, 1998.

[7] R. Arkin, “Motor Schema Based Navigation for a Mobile Robot, an Approach to
 Programming by Behavior,” in IEEE Proc. Robotics and Automation, pg 264-271,
 1987.

[8] R. Brooks, “A Robust Layered Control Scheme for a Mobile Robot,” IEEE J.
 Robot. Automation., vol. 2, no. 1, pp. 14-23, 1986.

[9] D.J. Stilwell, B.E. Bishop,” Redundant Manipulator Techniques for Path
 Planning and Control of a Platoon of Autonomous Vehicles,” IEEE conference
 for Decision and Control (Virginia, USA), pg 2093 -2098, 2002.

[10] B.E. Bishop, “On the Use of Redundant Manipulator Techniques for Control of
 Platoons of Cooperating Robotic Vehicles,” IEEE Transactions: Systems, Man
 and Cybernetics, pg 608-615, 2003.

[11] G. Butler, A. Gantchev, P. Grogono, “Object-Orient Design of the Subsumption
 Architecture,” Software-Practice and Experience, pg. 911-923, 2001.

[12] H. Van Dyke Parunak, “Applications of Distributed Artificial Intelligence in
 Industry,” Foundations of Distributed Artificial Intelligence. Wiley Inter-Science,
 Chapter 4, 1994. http://www.erim.org/~vparunak/jennings.pdf , (10 NOV 03)

[13] E. Kobayashi, Aoki, Hirokawa, Ichikawa, Saitou, Miyamoto, Iwasaki, H.
 Kobayashi, “Development of an Autonomous Underwater Vehicle Maneuvering
 Simulator,” OCEANS, MTS/IEEE Conference and Exhibition, pg 361-368, 2001

 85

[14] Brooks, R.A. "How to Build Complete Creatures Rather Than Isolated Cognitive
 Simulators," in K. VanLehn (ed.), Architectures for Intelligence, pp. 225-239,
 Lawrence Erlbaum Associates, Hillsdale, NJ, 1991,
 http://ai.eecs.umich.edu/cogarch3/Brooks/Brooks_RealWorld.html (10 NOV 03)

[15] R. Smith, “Adaptive Robotics- Behavior-Based Robotics” 12 May 2003.
 http://www.inel.gov/adaptiverobotics/behaviorbasedrobotics/ (11 OCT 03)

[16] C. Reynolds, Boids, 6 Sept 2001, http://www.red3d.com/cwr/boids/ (7 SEPT 03)

[17] J.A. Piepmeier and P.A. Morgan. “Uncalibrated Vision–Based Control of Two-
 Wheeled Mobile Robots.” In Proc. International Mechanical Engineering
 Conference and Exposition, Pg CDROM, New York, NY, 2001.

[18] D. Stilwell, B.E. Bishop. “A Strategy for Controlling Autonomous Robot

Platoons.” In Proc. 39th Conference of Decision and Control. Sydney, Australia.
2000

[19] S.B Niku. Introduction to Robotics: Analysis, Systems, Applications. New Jersey:

Prentice Hall.1998

[20] ‘Parallel SAR Pattern.’ Virtual U.S. Coast Guard Webpage. 21 March 2004.
 http://vuscg.org/ (24 March 04)

[21] P. Hsu, J. Hauser and S. Sastry, "Dynamic Control of Redundant Manipulators,"
 in Proc. IEEE Int'l Conference on Robotics and Automation, 1998.

[22] N. Nise, Control Systems Engineering, Third Edition, John Wiley & Sons Inc,

2000.

 86

% Appendix A
% Yong Chye Tan
% Trident Project SImulation1
% Simulation of 1 robot in a 2-D field avoiding obstacles

function ldot = oas(t,p)
global Obst

Katt = 1; %attractive gain
Krep = 1; %repulsive gain
Xobst = 2; %x coodinate of obstacle
Yobst = 3 ; %y coodinate of obstacle
r=0.1; % sensing radius of holonomic robot
R= 0.5; %magnitude of radius of obstacle
rho = R+ 0.5; %maginitude of radius of influence of obstacle
Xt= 3; %x coodinate of target
Yt=5; %y coodinate of target
x=p(1); %x coordinate of holonomic robot
y=p(2); %y coordinate of holonomic robot

plot(Xobst, Yobst,'*'); % plot center of obstacle
theta_att= atan2(Yt -y, Xt-x); % attractive angle
xatt = Xt- x; ; % x dist of attractive vector
yatt = Yt - y; % y dist of attractive vector

L = [xatt ; yatt]; % vector to show length of attractive vector
Mag_L= sqrt(L'*L); %magnitude of length
attctrl = Katt*[(Mag_L)*cos(theta_att) ;(Mag_L)*sin(theta_att)]; %attractive
control, potential

%repulsive control
theta_rep= atan2(y-Yobst, x-Xobst); %angle of repulsion
xdist = x-Xobst-R*cos(theta_rep) ; %x distance of vector
ydist = y-Yobst-R*sin(theta_rep); %y distance of vector
Length = [xdist ; ydist]; % vector to delineate length
Mag_Leng=sqrt(Length'*Length); %magnitude of Length

if (Mag_Leng<(rho-R))

repctrl=Krep*[(1/Mag_Leng)*cos(theta_rep)-(1/(rho-R))*cos(theta_rep);
 (1/Mag_Leng)*sin(theta_rep)-(1/(rho-R))*sin(theta_rep)] ; % repulsion
control. potential

 else
 repctrl=[0;0];

 end

ldot = repctrl + attctrl; %controller

 87

% Appendix B
% Yong Tan
% Trident Scholar Project
% distcalc to be used to find distance from each other
function ldot= distcalc(t,p)

[n,m]=size(p); %converting the column vector into a 3*2 vector
count=n/2;
r=zeros(count,2);
A=0;
for i=1:n %conversion of a 6 by 1 column vector into a 3 by 2
 if rem(i,2)==0 %if i is even move to 2nd column
 y=i/2;,
 r(y,2)=p(i,1);
 else %if i is odd, move to 1st column
 y=(i+1)/2;
 r(y,1)=p(i,1);
 end

end

Katt=1; % attractive constant

Krep=10; % repulsion constant

% find centroid of all 3 robots
[n, m]=size(r); % size of robo vector
A=sum(r,1); % sum of all x,y coordinates
Xc= A(1,1)/n; % x-coordinate of centroid of all robots
Yc=A(1,2)/n; % y-coordinate of centroid of all robots
plot(Xc, Yc,'*');
hold on;

%Attractive control
att=zeros(n,m); %create matrix

for i=1:n
 att(i,1)=Xc-r(i,1); % find x attractive potential
 att(i,2)=Yc-r(i,2); % find y attractive potential
end

attctrl= Katt* att;

rep=zeros(n,2);
qa=zeros(1,2);
qb=zeros(1,2);

for i=1:(n-1) % Matrix to write the repulsive potential
 for j=2:n % by reducing the number of times each point is added, we run
the matrix 1/2 the required times
 if i==j % if i=j, same point, thus discard
 else
 Xa=r(i,1);
 Ya=r(i,2);
 Xb=r(j,1);
 Yb=r(j,2);

 dist_ab=sqrt(((Xa-Xb)^2) +((Ya-Yb)^2));

 theta_ba=atan2(Ya-Yb, Xa-Xb);
 qa=[(1/dist_ab)*cos(theta_ba),(1/dist_ab)*sin(theta_ba)];
 rep(i,:)=rep(i,:)+qa;

 qb= [(1/dist_ab)*cos(theta_ba+ pi),(1/dist_ab)*sin(theta_ba+pi)];
 rep(j,:)=rep(j,:)+qb;

 end

 end
end

repctrl= Krep*rep;

q=zeros(n,m);
qspec=zeros((n*m),1);

 q = attctrl + repctrl; %sum of attractive and repulsive controller
 counter=0;
 for i=1:n
 for j=1:m
 counter=counter+1;
 qspec(counter,1)=q(i,j);

 end
 end

 ldot=qspec;

 88

% Appendix C
% Yong Tan
% Trident Scholar Project

% distcalc to be used to find distance from each other
function ldot= multiobst(t,p)
%list constants
global obst

Katt=1; % attractive constant
Krep=5; % repulsion constant
Kattarget=5; % attractive constant to target
Kreptar=15; % repulsion constant from obstacle
Xt=20; %x-coordinate of target
Yt=20; %y-coordinate of target

R=0.5; %radius of obstacle
rho=R+1; %radius of influence
%%%
[n,m]=size(p); %converting the column vector into a 3*2 vector
count=n/2;
r=zeros(count,2);
A=0;
for i=1:n %conversion of a 6 by 1 column vector into a 3 by 2
 if rem(i,2)==0 %if i is even move to 2nd column
 y=i/2;,
 r(y,2)=p(i,1);
 else %if i is odd, move to 1st column
 y=(i+1)/2;
 r(y,1)=p(i,1);
 end
end

% find centroid of all 3 robots
[n, m]=size(r); % size of robo vector
A=sum(r,1); % sum of all x,y coordinates
Xc= A(1,1)/n; % x-coordinate of centroid of all robots
Yc=A(1,2)/n; % y-coordinate of centroid of all robots
%plot(Xc, Yc,'*');
%hold on;
%Attractive control
att=zeros(n,m); %create matrix

for i=1:n
 att(i,1)=Xc-r(i,1); % find x attractive potential
 att(i,2)=Yc-r(i,2); % find y attractive potential
end

attctrl= Katt* att;
%%%
% attractive potential of individual points to target
attargetctrl=zeros(n,m);

for i=1:n
 Xattar=(Xt-r(i,1));
 Yattar=(Yt-r(i,2));
 theta_target = atan2(Yattar,Xattar); % angle of attracion to target

 l=[Xattar ; Yattar]; % vectorto show length of attractive vector to target
 Mag_l=sqrt(l'*l); %magnitude of length

 attargetctrl(i,1)= (Mag_l)*cos(theta_target);
 attargetctrl(i,2)= (Mag_l)*sin(theta_target);
end
attargetctrl=Kattarget*attargetctrl;
%%%
%repulsive potential away from each other
rep=zeros(n,2);

qa=zeros(1,2);
qb=zeros(1,2);

for i=1:(n-1) % Matrix to write the repulsive potential
 for j=2:n % by reducing the number of times each point is added, we run
the matrix 1/2 the required times
 if i==j % if i=j, same point, thus discard
 else
 Xa=r(i,1);
 Ya=r(i,2);
 Xb=r(j,1);
 Yb=r(j,2);
 dist_ab=sqrt(((Xa-Xb)^2) +((Ya-Yb)^2)); % distance from each point
 theta_ba=atan2(Ya-Yb, Xa-Xb);
 qa=[(1/dist_ab)*cos(theta_ba),(1/dist_ab)*sin(theta_ba)];
 rep(i,:)=rep(i,:)+qa;

 qb= [(1/dist_ab)*cos(theta_ba+ pi),(1/dist_ab)*sin(theta_ba+pi)];
 rep(j,:)=rep(j,:)+qb;
 end
 end
end

repctrl= Krep*rep;
%%%
%repulsive control away multiple obstaclesfrom the obstacle
reptarget=zeros(n,m);

totalrepobst=zeros(n,m);
[w,v]=size(obst);

for k=1:w
 for i=1:n
 theta_obst = atan2(r(i,2)-obst(k,2),r(i,1)-obst(k,1)); % angle of repulsion
form obstacle
 Xdist=(r(i,1)-obst(k,1)-R*cos(theta_obst));
 Ydist=(r(i,2)-obst(k,2)-R*sin(theta_obst));

 L=[Xdist ; Ydist]; % vectorto show length of repulsion vector to obstacle

 Mag_L=sqrt(L'*L); %magnitude of length

 if (Mag_L<(rho-R))
 repobst(i,1)= ((1/Mag_L)*cos(theta_obst))-((1/(rho-R))*cos(theta_obst));
 repobst(i,2)= ((1/Mag_L)*sin(theta_obst))-((1/(rho-R))*sin(theta_obst));
 else
 repobst(i,1)= 0;
 repobst(i,2)=0;
 end
 end
totalrepobst=totalrepobst+repobst;
end
reptarget=Kreptar*totalrepobst;
%%%
q=zeros(n,m);
qspec=zeros((n*m),1);

 q = attctrl + repctrl + attargetctrl + reptarget; %sum of attractive and
repulsive controller
 counter=0;
 for i=1:n
 for j=1:m
 counter=counter+1;
 qspec(counter,1)=q(i,j);
 end
 end

 ldot=qspec;

 89

% Appendix D
%Yong Tan
%Trident project
%behavior based: program to run simulation with multiple robots

global obst% list obstacles as a global variable

R=0.5;
rho=1+R;
%%%
%create obstacles insimulation

obst=obst1; %using preset data points as references for sqobst
robot=[0 0 6 0 3 4 9 7 6 5 0 1]';
[t,p]=ode45('multiobst', [0,60],robot); %run program for specified robot points

%%%
[n,m]=size(robot); %converting the column vector into a 3*2 vector
count=n/2;
newrobot=zeros(count,2);
A=0;
for i=1:n %conversion of a 6 by 1 column vector into a 3 by 2
 if rem(i,2)==0 %if i is even move to 2nd column
 y=i/2;,
 newrobot(y,2)=robot(i,1);
 else %if i is odd, move to 1st column
 y=(i+1)/2;
 newrobot(y,1)=robot(i,1);
 end
end
%%%
[w,m]=size(newrobot);

for i=1:w
 plot(newrobot(i,1),newrobot(i,2),'+');
end

for i=1:n
 if rem(i,2)==0

 else
 next=i+1;
 plot(p(:,i),p(:,next)) ;
 end
end

title('3 robots movig and avoiding obstacle');
 xlabel('x-coodinates');
 ylabel('y-coodinates');
 grid;

 figure(2);
 %end

 plot3(t,p(:,1),p(:,2),':');
 hold on;
 plot3(t,p(:,3),p(:,4),'p--');
 plot3(t,p(:,5),p(:,6),'o-');
 plot3(t,p(:,7),p(:,8),'y-.');
 plot3(t,p(:,9),p(:,10),'m-');
 plot3(t,p(:,11),p(:,12),'g-*');
 title(' individual tracks taken by each robot');
 xlabel('time-coodinates');
 ylabel('x-coodinates');
 zlabel('y-coodinates');
 grid;

 legend('Track of 1st robot','Track of 2nd robot','Track of 3rd robot','Track of 4th
robot','Track of 5th robot','Track of 6th robot')

 90

%Appendix E1
% Yong Tan
% Trident Scholar Project

function ob=obst()
% This file sets up vetices
% for a number of obstacles
% The C-space equivalent is
% drawn at runtime.
global NUM

ans = input('Do you wish to generate new obstacles (y/n)? ', 's');
if (ans == 'y')
 NUM = [];
 N = input('How many obstacles do you wish to generate? ');
 figure(1);
 clf;
 axis([0 20 0 20]);
 hold;
 OBST = [];
 for i = 1:N
 temp = ['Obstacle #', num2str(i), ': Click on each vertex in CLOCKWISE order.
Double-click final vertex.'];
 disp(temp);
 input('Press ENTER when ready');

 [xo, yo] = getpts;
 [n, m] = size(OBST);
 xo = [xo; xo(1)];
 yo = [yo; yo(1)];
 fill(xo, yo, 'r');
 l_new = length(xo);
 if (l_new < 3)
 error('An obstacle must have at least 3 vertices');
 end
 NUM(i) = l_new - 1;
 if (m < l_new)&(m > 0)
 OBST = [OBST, zeros(n, l_new - m)];
 end
 if (m > l_new)
 xo = [xo; zeros(m-l_new, 1)];
 yo = [yo; zeros(m-l_new, 1)];
 end
 OBST = [OBST; xo'; yo'];
 end
else
 ans = input('Choose: 1 Last set of obstacles, 2 Standard: ');
 if (ans == 2)
 NUM = [4 3 3]; % Number of vertices for each
 obstacle

 O1 = [1 1; % that is an 'oh1', not a
 'zero1'
 1.1 2;
 2 2.1;
 2.1 1.1;];

 O1 = [O1; O1(1, :)];

 O2 = [4 4;
 6 2;
 4.1 2.1];

 O2 = [O2; O2(1, :)];
 O3 = [6 6;
 8 6.1;
 8.1 4];

 O3 = [O3; O3(1, :)];
 OBST = [O1'; O2' [0 0]'; O3' [0 0]']
 end
 figure(1);
 clf;
 axis([0 20 0 20]);
 hold;
end
ob=OBST;

 91

%Appendix E2
%Yong Tan
%Trident project
%behavior based: program to run simulation with multiple robots

global obs% list obstacles as a global variable
global target
global NUM

%%%
%create obstacles in simulation

obs=obst; %create obstacles in plot
[row,col]=size(obs);

 %matrix to store command positions
pts=inputpoints; %Get points
[roww,coll]=size(pts);
robot=zeros((roww-2),1);

for i=1:(roww-2)
 robot(i,1)=pts(i,1);
end
target=zeros(1,2);
target(1,1)=pts(roww-1,1);
target(1,2)=pts(roww,1);

[t,p]=ode45('avoidobst', [0,60],robot); %run program for specified robot points

%%%
[n,m]=size(robot); %converting the column vector into a 3*2 vector
count=n/2;
newrobot=zeros(count,2);

for i=1:n %conversion of a 6 by 1 column vector into a 3 by 2
 if rem(i,2)==0 %if i is even move to 2nd column
 y=i/2;
 newrobot(y,2)=robot(i,1);
 else %if i is odd, move to 1st column
 y=(i+1)/2;
 newrobot(y,1)=robot(i,1);
 end
end
%%%
%plotting position of the new robots
[w,m]=size(newrobot);

for i=1:w
 plot(newrobot(i,1),newrobot(i,2),'+');
end
% plotting positions of the paths
for i=1:n
 if rem(i,2)==0
 else
 next=i+1;
 plot(p(:,i),p(:,next)) ;
 end
end

title('3 robots moving and avoiding new obstacle');
 xlabel('x-coodinates');
 ylabel('y-coodinates');
 grid;

[row,col]=size(p);

robot=p(row,:)';

%end

 figure(2);

 plot3(t,p(:,1),p(:,2),'r:');
 hold on;
 plot3(t,p(:,3),p(:,4),'g--');
 plot3(t,p(:,5),p(:,6),'c-');
 title(' individual tracks taken by each robot in new obstacle');
 xlabel('time-coodinates');
 ylabel('x-coodinates');
 zlabel('y-coodinates');
 grid;
 legend('Track of 1st robot','Track of 2nd robot','Track of 3rd robot')

 92

%Appendix E3
% Yong Tan
% Trident Scholar Project
%edited from Prof Bishop

% This function takes a robot position (x,y)
% and a vector of obstacle vertices OBST as
% well as a vector NUM that contains the number
% of vertices per obstacle. It returns the
% repulsive force vector Frep
% No obstacle should have two vertices on the
% a horizontal line.

function Frep = repulse(x, y, OBST, NUM)

eta = 0.5; % Coefficient for repulsive potential
rho = 1.5; % Maximum distance for repulsive field of
obstacles
min_dist = 100000; % initialize to 'infinity'
for i = 1:length(NUM)
 for j = 1:NUM(i)
 x1 = OBST(2*i-1, j); % current vertex x
 x2 = OBST(2*i-1, j+1); % next vertex x
 y1 = OBST(2*i, j); % current vertex y
 y2 = OBST(2*i, j+1); % next vertex y
 if (x2 ~= x1)
 slope = (y2-y1)/(x2-x1); % side slope
 else
 slope = Inf;
 end
 y_inter = y1 - x1*slope; % side y-intercept
 A = slope;
 B = -1;
 C = y_inter;
 dist = abs((A*x + B*y + C)/sqrt(A*A + B*B)); % distance from robot (x,y)
to side
 if (dist < min_dist)
 angle_edge = atan2(y2 - y1, x2 - x1); % angle of edge
 angle_test = angle_edge + pi/2; % angle of force vector
 %pt = [x1 + cos(angle_test); y1 + sin(angle_test)]; %
 pob = [x + cos(angle_test + pi)*dist;
 y + sin(angle_test + pi)*dist;]; % closest point on extended
edge
 d1 = norm([pob(1) - x1; pob(2) - y1]); % distance from extended edge
intercept
 % to current vertex
 d2 = norm([pob(1) - x2; pob(2) - y2]); % distance from extended edge
intercept
 % to current vertex
 l = norm([x1 - x2; y1 - y2]); % distance from vertex to
vertex
 if (max([d1, d2]) > l) % extended edge intercept NOT
between
 % vertices... do nothing
 else
 min_dist = dist; % closest point is between
vertices
 angle_push = angle_test; % push away from edge
 end
 end
 dist = norm([x - x1, y - y1]); % distance to vertex
 if (dist < min_dist) % closest point is at vertex
 min_dist = dist;
 angle_push = atan2(y - y1, x - x1); % push away from vertex
 end
 end
 end

 if (min_dist < rho) % inside radius of influence
 Frep = [cos(angle_push) sin(angle_push)]*eta*(1/(min_dist-0.25) - 1/(rho-
0.25))*1/(min_dist^2);
 else
 Frep = [0 0]; % outside radius of
influence
 end

 93

% Appendix F
%Yong Tan
%Trident project
%behavior based: program to run simulation with multiple robots

global OBST% list obstacles as a global variable
global target
global NUM
global MINES

%%%
%create obstacles in simulation

obstone;%create obstacles in plot
MINES=mines;
OBST=ob;
[row,col]=size(OBST);

 %matrix to store command positions
pts=inputpoints; %Get points
[row,col]=size(pts);
robots=zeros((row-2),1);

for i=1:(row-2)
 robot(i,1)=pts(i,1);

 end
target=zeros(1,2);
target(1,1)=pts(row-1,1);
target(1,2)=pts(row,1);

[t,p]=ode45('findmine', [0,50],robot); %run program for specified robot points

%%%
[n,m]=size(robot); %converting the column vector into a 3*2 vector
count=n/2;
newrobot=zeros(count,2);

for i=1:n %conversion of a 6 by 1 column vector into a 3 by 2
 if rem(i,2)==0 %if i is even move to 2nd column
 y=i/2;
 newrobot(y,2)=robot(i,1);
 else %if i is odd, move to 1st column
 y=(i+1)/2;
 newrobot(y,1)=robot(i,1);
 end
end
%%%
[w,m]=size(newrobot);

for i=1:w
 plot(newrobot(i,1),newrobot(i,2),'+');
end
for i=1:n
 if rem(i,2)==0
 else
 next=i+1;
 plot(p(:,i),p(:,next)) ;
 end
end

title('3 robots movig and avoiding obstacle');
 xlabel('x-coodinates');
 ylabel('y-coodinates');

[row,col]=size(p);

robot=p(row,:)';
%end

% figure(2);
%
% plot3(t,p(:,1),p(:,2),':');
% hold on;
% plot3(t,p(:,3),p(:,4),'--');
% plot3(t,p(:,5),p(:,6),'-');
 %title(' individual tracks taken by each robot');
 %xlabel('time-coodinates');
 %ylabel('x-coodinates');
 %zlabel('y-coodinates');
 %grid;
 %legend('Track of 1st robot','Track of 2nd robot','Track of 3rd robot')

 94

%Appendix G
% Yong Tan
% Trident Scholar Project

% This program is used to determine how the subsumption architecture affects the
movement of the
% robot since it is rule based and subjected to its location within the hierachy.

function pdot= subsumption_wp(t,p)
%list constants

global T
global brownian
global leg
global OBST
global ROBOT
global INITIAL_ROBOT
global WAYPTS
global NUM
global MINES
global counter

%initiliase gains
Katt=2; % attractive constant
Krep=5; % repulsion constant
Kreptar=15; % repulsion constant from obstacle

R=0.3; %radius of obstacle
rl=0.2; %sensing radius
rho=R+0.2; %radius of influence of robot

 %%%
[n,m]=size(p); %converting the column vector into a 3*2 vector
count=n/2;
ROBOT=zeros(count,2);
for i=1:n %conversion of a 6 by 1 column vector into a 3 by 2
 if rem(i,2)==0 %if i is even move to 2nd column
 y=i/2;
 ROBOT(y,2)=p(i,1);
 else %if i is odd, move to 1st column
 y=(i+1)/2;
 ROBOT(y,1)=p(i,1);
 end
end
 %%%
% begin subsumption architecture,
% highest order, avoid obstacle; detect mine; gathering; random motion

% matrix to store resultant vector
resultant=zeros(size(ROBOT));

%1. find closest mines
Notarget=disttarget(MINES,ROBOT);

%2. find shortest distance
minobstdist=calculatemindist(OBST,ROBOT,NUM);
Frep=[];

%3. find separation of robots
[n, m]=size(ROBOT);
 robodist=robotdist(ROBOT);
 close_d=min(robodist);
count=0;
%%%
 %****************subsumption part of codes*******************************
for i=1:n
 position=0;

 % for every robot calculate closest mine
 % 1. HIghest order: Avoid mines, tag them and store positions
 if (Notarget(i,1)<=0.3)
 % repulse away from target and change them into a potential
 position=(Notarget(i,2));
 %find the index of the closest mine
 counter=counter+1;
 if (counter>5);

 plot(MINES(position,1),MINES(position,2),'gd');
 counter=0;
 else
 end
 [rows,cols]=size(MINES); % finding size of mine
 totalrep=zeros(n, m);
 repmine=zeros(n, m);

 theta_mine = atan2(ROBOT(i,2)-MINES(position,2),ROBOT(i,1)-
MINES(position,1)); % angle of repulsion form obstacle

 Xdist=(ROBOT(i,1)-MINES(position,1)-rl*cos(theta_mine));
 Ydist=(ROBOT(i,2)-MINES(position,2)-rl*sin(theta_mine));

 % vectorto show length of repulsion vector to obstacle
 Mag_L=norm([Xdist ; Ydist]); %normalize vector for magnitude of length

 repmine(i,1)= ((1/Mag_L)*cos(theta_mine))-((1/(rho-
rl))*cos(theta_mine));
 repmine(i,2)= ((1/Mag_L)*sin(theta_mine))-((1/(rho-
rl))*sin(theta_mine));

 random(i,:)= randn(1,2);
 totalrep(i,:)=Kreptar*(repmine(i,:)+ random(i,:));
 resultant(i,:)=totalrep(i,:);

 else
%%%
% #2 AVoid closest obstacles
 if (minobstdist<0.8)

 %repulsive control away from multiple obstacles
 temp1=ROBOT(i,1); % set first x coor of robot to temp1
 temp2=ROBOT(i,2); % set first y coor of robot to temp2
 Frep(i,:) = repulse(temp1, temp2, OBST, NUM); % find repulsive force
away from obstacles

 %random_var=0.3*randn(1,2); %add random variable
 Repelobst(i,:)=Frep(i,:);%+brownian; %create final vector
 resultant(i,:)=Repelobst(i,:); % store in new vector

 % disp('Avoid')

 else

%%%
 if (close_d>3)
 % if the distance between robots were greater than 5,less than
20,
 %ignore, computational error
 resultant=zeros(n,m);

 elseif ((close_d>1) & (close_d<=2))
 % find centroid of all 3 robots
 [n, m]=size(ROBOT); % size of robo vector
 A=sum(ROBOT,1); % sum of all x,y coordinates
 Xc= A(1,1)/n; % x-coordinate of centroid of all robots
 Yc=A(1,2)/n; % y-coordinate of centroid of all robots

 95

 %Attractive control
 att=zeros(n,m); %create matrix
 Mag_change=norm([Xc-ROBOT(i,1),Yc-ROBOT(i,2)]);
 theta_att=atan2(Yc-ROBOT(i,2),Xc-ROBOT(i,1));

 att(i,1)=Mag_change*cos(theta_att); % find x attractive
potential
 att(i,2)=Mag_change*sin(theta_att); % find y attractive
potential

 attctrl(i,:)= Katt* att(i,:); % attractive potential
towards each other
 resultant(i,:)=attctrl(i,:); % assigning matix to
resultant
 % disp('gather')

 elseif ((close_d<0.5) & (close_d>0))
 %repulsive potential away from each other
 rep=zeros(n,2);
 qa=[]; %value to store repulsive vector to be added in one
direction
 qb=[]; %value to store repulsive vector to be added in other
direction(+pi)
 if (i<= (n-1)) % Matrix to write the repulsive potential
 for k=2:n % by reducing the number of times each
point is added, we run the matrix 1/2 the required times
 if i==k % if i=j, same point, thus discard
 else
 Xa=ROBOT(i,1);
 Ya=ROBOT(i,2);
 Xb=ROBOT(k,1);
 Yb=ROBOT(k,2);

 dist_ab=sqrt(((Xa-Xb)^2) +((Ya-Yb)^2)); % distance
from each point

 theta_ba=atan2(Ya-Yb, Xa-Xb);

qa=[(1/dist_ab)*cos(theta_ba),(1/dist_ab)*sin(theta_ba)];
 rep(i,:)=rep(i,:)+qa; % vector from one robot to
another

 qb= [(1/dist_ab)*cos(theta_ba+
pi),(1/dist_ab)*sin(theta_ba+pi)];
 rep(k,:)=rep(k,:)+qb; % reciprocal vector from
one robot to another
 end
 end
 else
 end
 repctrl(i,:)= Krep*rep(i,:);
 resultant(i,:)=repctrl(i,:);
 % disp('spread')

 %%%
 %successful code for random motion
 %Create random points
 elseif((close_d>0.3) & (close_d<1.0))
 %separate x,y components into different matrices
 [roww,col]=size(WAYPTS) ;
 brownian = randn(1,2);

 x_d = WAYPTS(leg, 1);
 y_d = WAYPTS(leg, 2);

 [n,m]=size(ROBOT);

 att_d=zeros(1,m);

 x = ROBOT(i,1);
 y = ROBOT(i,2);

 att_d(i,:) = [x_d - x, y_d - y]; % attractive vector towards
desired position
 magnitude=sqrt((x_d - x)^2+ (y_d - y)^2);
 if (magnitude > 1)
 att_d(i,:) = (att_d(i,:)+ brownian)/magnitude; %
normalize vector, <1
 else
 if (magnitude < 0.1) % if position is <0.1 to desired
waypoint
 if (leg < length(WAYPTS))
 leg = leg + 1 % change waypoint
 else
 leg = leg;
 end
 end
 end

 if (t > T)
 T = T + 0.5;
 resultant(i,:) = att_d(i,:) + 3*brownian;
 else
 resultant(i,:) = att_d(i,:);
 end
 resultant;
 % disp('brownian')
 end
 end
 end
 end

%%%
[n,m]=size(resultant);% convert the n,m matrix = n*m,1 matrix
counter=0;
qspec=zeros(n*m,1);

for i=1:n
 for j=1:m
 counter=counter+1;
 qspec(counter,1)=resultant(i,j);
 end
end
pdot=qspec;

 96

% Appendix H
%Yong Tan
% Trident Scholar Project
% This file runs the program, improvedstat, to demonstrate the effects of 6 robots
% performing obstace avoidance while maintaining the mean and variance of the swarm
global mudx vardx mudxf vardxf % global variables of changes in mean and variance of
x
global mudy vardy mudyf vardyf % global variables of changes in mean and variance of
y
global Km Kv Ka % motion, velocity and acceleration constants
global R RAD RRAD Radmine% xoffset, yoffset, mean offset,
global Xobst Yobst Cx Cy Cmx Cmy num
global leg tf Xmine Ymine
global traj_hist

traj_hist = [];
num=6; % number of robots
R = 1; % Radius of obstacle
mudxf = [2 12 12];
mudyf = [10 10 0];
vardxf = [5 3 5];
vardyf = [3 5 3];
Km = 3; % 3 motion constant
Kv = 3; % 3 velocity constant
Ka = 5; % 1 % acceleration constant
RAD = 2; % minimum separtion distance between robots
RRAD = 0.5; % 1 % minimum distance between individual robots to obstacle
Radmine=0.3;
record = 0;
Xobst= [3 6 10]; %6
Yobst = [4 8 4]; %8
Xmine = [7 10];
Ymine = [10 6];
leg=1;

tf =18; % final time in sec
tspan = [0 tf]; % time span from 0-20 s

q0=[0 1 2 3 4 3.8105 0 2 0 2 1 2.5];

mudx = mean(q0(1:num));
mudy = mean(q0(num+1: 2*num));
vardx = var(q0(1:num));
vardy = var(q0(num+1: 2*num));

for zz = 1 : 3
 tfl = tf/3 + tf/3*(zz-1);
 til = tfl - tf/3;
 %polynomial interpolation
 if (zz > 1)
 mudx = mudxf(zz-1);
 mudy = mudyf(zz-1);
 vardx = vardxf(zz-1);
 vardy = vardyf(zz-1);
 end
 Cx = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1
0]^(-1)*[vardx; 0; vardxf(zz); 0];
 Cy = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1
0]^(-1)*[vardy; 0; vardyf(zz); 0];

 Cmx = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1
0]^(-1)*[mudx; 0; mudxf(zz); 0];
 Cmy = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1
0]^(-1)*[mudy; 0; mudyf(zz); 0];
 traj_hist = [traj_hist; Cx' Cy' Cmx' Cmy' tfl];
end

options = odeset('RelTol', 1e-12, 'AbsTol', 1e-10*[ones(2*num,1)]');

[t, q] = ode45('improvedstat', tspan, q0); % calculates the x, y position based on
time

figure(1);
clf(1);
 nextT = 0;
 axis([-8 18 -3 13]);
 axis('manual');
 xlabel('X (m)');
 ylabel('Y (m)');
 title('Motion of Platoon Units with the Statistical Controller');
 hold;
 theta = 0:0.01:2*pi;
 [a,b]=size (Xobst);
 for (i=1:b)
 obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the
obstacle
 plot(obst(1, :), obst(2, :));
 end
 [a,c]=size (Xmine);
 for (i=1:c)
 mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing
the obstacle
 plot(mine(1, :), mine(2, :));
 end
 robot = [-0.03 -0.03; 0.03 -0.03; 0.03 0.03; -0.03 0.03];% using little squares
to represent the robots
 clear M;
 col = ['g', 'r', 'b', 'c', 'm', 'y'];
 for (i = 1:length(t))
 if t(i) >= nextT % everytime, T, draw and color robot..
 for (j = 1:num)
 fill(robot(:, 1)+q(i, j), robot(:, 2)+q(i, j+num), col(j)); % fill
in shape and color of the simulated robots.
 end
 nextT = nextT + 0.05; % at next time T
 end
 M(i) = getframe;
 % pause
 end
 axis('equal');
 axis([min(min(q(:, 1:6)))-1, max(max(q(:,1:6)))+1,min(min(q(:, 7:12)))-1,
max(max(q(:,7:12)))+1]);
 hold off;

 %labelling the plot
 for h=1:(length(Xobst))
 gtext(['Obstacle #',num2str(h)]);
 end
 for p=1:(length(Xmine))
 gtext(['Mine #',num2str(p)]);
 end
 for j=1:num
 gtext(['Unit #',num2str(j)]);
 end

figure(2)
clf(2);
for i = 1:6
 subplot(3,2,i);
 axis([0 15 0 15]);
 axis('manual');
 title(['Unit #', num2str(i)]);
 ylabel('Y (m)');
 if i>4
 xlabel('X (m)');
 end
 hold

 97

 plot(q(:, 1+(i-1)), q(:, 1+num+(i-1))); % plot individual paths
 [a,b]=size (Xobst); %plot individual obstacles
 theta = 0:0.01:2*pi;
 for (i=1:b)
 obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the
obstacle
 plot(obst(1, :), obst(2, :));
 end
 [c,d]=size (Xmine); % plot individual mines
 for (i=1:d)
 mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing
the obstacle
 plot(mine(1, :), mine(2, :));
 end
 hold off
end
xmean = mean(q(:, 1:num)')';
ymean = mean(q(:, num+1:2*num)')';
xvar = var(q(:, 1:num)')';
yvar = var(q(:, num+1:2*num)')';

figure(3)
clf(3);
subplot(2,2,1)
plot(t, xmean,'b:');
hold;
[xx, qq] = size(traj_hist);
for i = 1:xx
 T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]';
 Cmx = traj_hist(i, 9:12)';
 plot(T, Cmx(1)*T.^3 + Cmx(2)*T.^2 + Cmx(3)*T + Cmx(4), 'r-');
 title('Platoon Tracking Mean X Errors');
 xlabel('Time (s)');
 ylabel('Mean X (m)');
end
hold
subplot(2,2,2)
plot(t, ymean,'b:');
hold;
for i = 1:xx
 T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]';
 Cmy = traj_hist(i, 13:16)';
 plot(T, Cmy(1)*T.^3 + Cmy(2)*T.^2 + Cmy(3)*T + Cmy(4), 'r-');
 title('Platoon Tracking Mean Y Errors');
 xlabel('Time (s)');
 ylabel('Mean Y (m)');
end
hold
subplot(2,2,3)
plot(t, xvar,'b:');
hold;
for i = 1:xx
 T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]';
 Cx = traj_hist(i, 1:4)';
 plot(T, Cx(1)*T.^3 + Cx(2)*T.^2 + Cx(3)*T + Cx(4), 'r-');
 title('Platoon Tracking Variance X Errors');
 xlabel('Time (s)');
 ylabel('Variance X ');
end
hold
subplot(2,2,4)
plot(t, yvar,'b:');
hold;
for i = 1:xx
 T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]';
 Cy = traj_hist(i, 5:8)';
 plot(T, Cy(1)*T.^3 + Cy(2)*T.^2 + Cy(3)*T + Cy(4), 'r-');
 title('Platoon Tracking Variance Y Errors');

 xlabel('Time (s)');
 ylabel('Variance Y ');
end
legend('actual values', 'desired values');

hold
%create movie avi
%figure(4)
%movie2avi(M,'test2.avi','FPS', 10,'Quality',99);

collision = 0;
min_dist = 1000;
for i = 1:length(q)
 X = [];
 for j = 1:num
 X = [X, [q(i, j); q(i, j+num)]];
 end
 for k = 1:2
 for l = k+1:num
 dist = X(:, k) - X(:, l);
 dist = sqrt(dist'*dist);
 if (dist < min_dist)
 min_dist = dist;
 end
 if (dist < 0.06*sqrt(2))
 error('Collison!');
 end
 end
 end
end

 98

%Appendix I
% Yong Tan
%Tridnet Scholar project
function qdot = plain6test(t, q)
% function show the statistical controllers work in an
%environment with mines and obstacles.
global Km Kv Ka
global mudx vardx mudxf vardxf mux
global mudy vardy mudyf vardyf muy
global R RAD RRAD Radmine
global Xobst Yobst RADOBST Cx Cy Cmx Cmy num
global leg tf Xmine Ymine
global traj_hist
%C terms are used to control tragectories.
%Cx,Cy are variance tragectory controls
%Cmx,Cmy are mean trajectory controls

feedforward = 1;% drive robots forward in jacobian
%check distance between robots and the mines,
findmine=checkdist(q, Xmine, Ymine, Radmine); %find cloest dist and position
closestdistmine=findmine(1,:); %find closest mine dist
posmine=findmine(2,:); % position of mine

%check distance between robots and the obstacles
findobst=checkdist(q, Xobst, Yobst, R);
closestobst=findobst(1,:);
posobst=findobst(2,:);
mux = mean(q(1:num)); % x=q... represent the states x, y, x= 1:4, y 5:8
muy = mean(q(num+1:2*num)); % x(5:8) represent the y values
varx = var(q(1:num)); % variance of x
vary = var(q(num+1:2*num)); % variance of y
x_d = mudxf(leg);
y_d = mudyf(leg);

 magnitude=sqrt((x_d - mux)^2+ (y_d - muy)^2); % distance from centroid of swarm to
waypoint
 %waypoint changes if the time is
 for mm = 1:length(mudxf)
 if (t < traj_hist(mm, 17))
 break;
 end
 end
 leg = mm;
 %calculated trajectory projection based on each leg
 Cx = traj_hist(leg, 1:4)';
 Cy = traj_hist(leg, 5:8)';
 Cmx = traj_hist(leg, 9:12)';
 Cmy = traj_hist(leg, 13:16)';

 mudx = Cmx'*[t^3 t^2 t 1]'; %desired x mean position
 mudy = Cmy'*[t^3 t^2 t 1]'; %desired y mean position
 dmudx = Cmx'*[3*t^2 2*t 1 0]'; %desired vx mean velocity, derivatives
 dmudy = Cmy'*[3*t^2 2*t 1 0]'; %desired vy mean velocity, derivatives

 varxt = Cx'*[t^3 t^2 t 1]'; %desired x position variance
 varyt = Cy'*[t^3 t^2 t 1]'; %desired y position variance
 dvarxt = Cx'*[3*t^2 2*t 1 0]'; %desired vx velocity variance, derivatives
 dvaryt = Cy'*[3*t^2 2*t 1 0]'; %desired vy velocity variance, derivatives
 t
 J = [1/num*(ones(1,num)); 2/(num-1)*((q(1:num))'-mux)]; % matrix defined by
state and task function: difference from mean in x
 Jy = [J(1, :); 2/(num-1)*(q(num+1:2*num)' - muy)]; %alternate matrix defined by
state -diff from mean in y
 J = [J zeros(2, num); zeros(2, num) Jy]; %create matrix of no. by 8 to discribe
x and y characteristics for no. roobots
 Jp = J'*(J*J')^(-1); % Moore-Penrose pseudo inverse T (resultant- 3by 8
matrix)

 % attractive vectors to keep swarm moving forward
 xa = [Km*(mudx - mux)+ feedforward*dmudx; Kv*(varxt - varx) + dvarxt]; %the
changes in mean and variance in x with feedforward term
 xay = [Km*(mudy - muy)+ feedforward*dmudy; Kv*(varyt - vary) + dvaryt]; %the
changes in mean and variance in y with feedforward term
 xd = [xa; xay];%

%*************** generating subsumption in a single robot

% function to calculate repulsion from each robot
irrep = zeros(2*num, 1);
for (i = 1:num)

 q1=q(i);
 q2=q(i+num);

 Xactm=Xmine(posmine(i)); % actual X position of mine
 Yactm=Ymine(posmine(i)); % actual Y position of mine

 repelmine=findreppot(q1,q2,Xactm,Yactm,Radmine); % repulsive vectors from mines
 pot(i)=repelmine(1);
 pot(i+num)=repelmine(2);

 % repulsive vectors away from obstacles
 Xactobst=Xobst(posobst(i)); % designating the mines
 Yactobst=Yobst(posobst(i));

 repobst=findreppot(q1,q2,Xactobst,Yactobst,R); % repulsive vector from obstacles
 potx(i)=repobst(1);
 potx(i+num)=repobst(2);

 totalpot(i)=pot(i)+potx(i);
 totalpot(i+num)=pot(i+num)+potx(i+num);
 min_dis = 10000;
 if (i <= 0)
 for j = 1:num
 if (i ~= j)
 dis = sqrt((q(i) - q(j))^2 + (q(i+num) - q(j+num))^2) - 0.2;
 if ((dis < min_dis)& (dis < RRAD))
 angle = atan2(q(j+num) - q(i+num), q(j) - q(i));
 min_dis = dis;
 end
 end
 end
 if (min_dis < RRAD)
 irrep(i) = cos(angle)*(1/(min_dis) - 1/(RRAD)); % added 1/RAD term repulsive
potential in x
 irrep(i+num) = sin(angle)*(1/(min_dis) - 1/(RRAD)); % added
 end
 totalpot(i) = totalpot(i) + 0.5*irrep(i);
 totalpot(i+num) = totalpot(i+num) + 0.5*irrep(i+num);
 end
end

qdot = Jp*xd + Ka*(eye(2*num) - Jp*J)*(totalpot');

 99

% Appendix J
% Yong Tan, Trident Scholar Project
% This file shows how the hybrid controller was implemented with subsumption
implemented in the
%statistical controller
global mudx vardx mudxf vardxf % global variables of changes in mean and variance of
x
global mudy vardy mudyf vardyf % global variables of changes in mean and variance of
y
global Km Kv Ka % motion, velocity and acceleration constants
global R RAD RRAD Radmine% xoffset, yoffset, mean offset,
global Xobst Yobst Cx Cy Cmx Cmy num
global leg tf Xmine Ymine
global traj_hist
global A E F
global avoid_hist XR YR
global xydifferences

traj_hist = [];
num=6; % number of robots
avoid_hist = zeros(num, 1);
R = 1; % Radius of obstacle
% XOFF = 3; % x offset fixed
% YOFF = 1; % y offset fixed
mudxf = [2 12 12];
mudyf = [10 10 0];
vardxf = [5 3 5];
vardyf = [3 5 3];
Km = 3; % 3 motion constant
Kv = 3; % 3 velocity constant
Ka = 5; % 1 % acceleration constant
RAD = 2; % minimum separtion distance between robots
RRAD = 0.5; % 1 % minimum distance between individual robots to obstacle
Radmine=0.3;
record = 0;
Xobst= [3 6 10];
Yobst = [4 8 4];
Xmine = [7 10];
Ymine = [10 6];
leg=1;

tf =18; % final time in sec
tspan = [0 tf]; % time span from 0-20 s

q0=[0 1 2 3 4 3.8105 0 2 0 2 1 2.5];

XR = [0.9501 0.4103 0.8462 0.1509 0.8385 0.1365
 0.2311 0.8936 0.5252 0.6979 0.5681 0.0118
 0.6068 0.0579 0.2026 0.3784 0.3704 0.8939
 0.4860 0.3529 0.6721 0.8600 0.7027 0.1991
 0.8913 0.8132 0.8381 0.8537 0.5466 0.2987
 0.7621 0.0099 0.0196 0.5936 0.4449 0.6614
 0.4565 0.1389 0.6813 0.4966 0.6946 0.2844
 0.0185 0.2028 0.3795 0.8998 0.6213 0.4692
 0.8214 0.1987 0.8318 0.8216 0.7948 0.0648
 0.4447 0.6038 0.5028 0.6449 0.9568 0.9883
 0.6154 0.2722 0.7095 0.8180 0.5226 0.5828
 0.7919 0.1988 0.4289 0.6602 0.8801 0.4235
 0.9218 0.0153 0.3046 0.3420 0.1730 0.5155
 0.7382 0.7468 0.1897 0.2897 0.9797 0.3340
 0.1763 0.4451 0.1934 0.3412 0.2714 0.4329
 0.4057 0.9318 0.6822 0.5341 0.2523 0.2259
 0.9355 0.4660 0.3028 0.7271 0.8757 0.5798
 0.9169 0.4186 0.5417 0.3093 0.7373 0.7600];

YR =[0.9669 0.4608 0.4199 0.6273 0.7036 0.7009
 0.6649 0.4574 0.7537 0.6991 0.4850 0.9623
 0.8704 0.4507 0.7939 0.3972 0.1146 0.7505

 0.0099 0.4122 0.9200 0.4136 0.6649 0.7400
 0.1370 0.9016 0.8447 0.6552 0.3654 0.4319
 0.8188 0.0056 0.3678 0.8376 0.1400 0.6343
 0.4302 0.2974 0.6208 0.3716 0.5668 0.8030
 0.8903 0.0492 0.7313 0.4253 0.8230 0.0839
 0.7349 0.6932 0.1939 0.5947 0.6739 0.9455
 0.6873 0.6501 0.9048 0.5657 0.9994 0.9159
 0.3461 0.9830 0.5692 0.7165 0.9616 0.6020
 0.1660 0.5527 0.6318 0.5113 0.0589 0.2536
 0.1556 0.4001 0.2344 0.7764 0.3603 0.8735
 0.1911 0.1988 0.5488 0.4893 0.5485 0.5134
 0.4225 0.6252 0.9316 0.1859 0.2618 0.7327
 0.8560 0.7334 0.3352 0.7006 0.5973 0.4222
 0.4902 0.3759 0.6555 0.9827 0.0493 0.9614
 0.8159 0.0099 0.3919 0.8066 0.5711 0.0721];

mudx = mean(q0(1:num)); % mean x at starting time
mudy = mean(q0(num+1: 2*num));% mean y at starting time
vardx = var(q0(1:num)); %initial varx
vardy = var(q0(num+1: 2*num));

% calculate trajetory history for each leg!!!!! % to be used in function
for zz = 1 : 3 %number of waypoints
 tfl = tf/3 + tf/3*(zz-1);
 til = tfl - tf/3;
 %polynomial interpolation
 if (zz > 1)
 mudx = mudxf(zz-1);
 mudy = mudyf(zz-1);
 vardx = vardxf(zz-1);
 vardy = vardyf(zz-1);
 end
 Cx = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1
0]^(-1)*[vardx; 0; vardxf(zz); 0];
 Cy = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1
0]^(-1)*[vardy; 0; vardyf(zz); 0];

 Cmx = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1
0]^(-1)*[mudx; 0; mudxf(zz); 0];
 Cmy = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1
0]^(-1)*[mudy; 0; mudyf(zz); 0];
 traj_hist = [traj_hist; Cx' Cy' Cmx' Cmy' tfl];
end

figure(1);
clf(1);
hold;
options = odeset('RelTol', 1e-12, 'AbsTol', 1e-10*[ones(2*num,1)]');
[t, q] = ode45('statsump', tspan, q0); % calculates the x, y position based on time

 nextT = 0;
 axis([-2 16 -3 14]);
 axis('manual');
 xlabel('X (m)');
 ylabel('Y (m)');
 title('Motion of Platoon Units with the Hybrid Controller ');
 %hold;
 theta = 0:0.01:2*pi;
 [a,b]=size (Xobst);
 for (i=1:b)
 obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the
obstacle
 plot(obst(1, :), obst(2, :));
 end
 [a,c]=size (Xmine);
 for (i=1:c)
 mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing
the obstacle

 100

 plot(mine(1, :), mine(2, :));
 end
 robot = [-0.03 -0.03; 0.03 -0.03; 0.03 0.03; -0.03 0.03];% using little squares
to represent the robots
 clear M;
 col = ['g', 'r', 'b', 'c', 'm', 'y'];
 for (i = 1:length(t))
 if t(i) >= nextT % everytime, T, draw and color robot..
 for (j = 1:num)
 fill(robot(:, 1)+q(i, j), robot(:, 2)+q(i, j+num), col(j)); % fill
in shape and color of the simulated robots.
 end
 nextT = nextT + 0.10; % at next time T
 end
 %M(i) = getframe;
 %pause
 end
 axis('equal');
 axis([min(min(q(:, 1:6)))-1, max(max(q(:,1:6)))+1,min(min(q(:, 7:12)))-1,
max(max(q(:,7:12)))+1]);
 hold off;
% %labelling the plot
% for h=1:(length(Xobst))
% gtext(['Obstacle #',num2str(h)]);
% end
% for p=1:(length(Xmine))
% gtext(['Mine #',num2str(p)]);
% end
% for j=1:num
% gtext(['Unit #',num2str(j)]);
% end
figure(2)
clf(2);
for i = 1:6
 subplot(3,2,i);
 axis([-2 16 -2 16]);
 axis('manual');
 title(['Unit #', num2str(i)]);
 ylabel('Y (m)');
 if i>4
 xlabel('X (m)');
 end
 hold
 plot(q(:, 1+(i-1)), q(:, 1+num+(i-1))); % plot individual paths
 [a,b]=size (Xobst); %plot individual obstacles
 theta = 0:0.01:2*pi;
 for (i=1:b)
 obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the
obstacle
 plot(obst(1, :), obst(2, :));
 end
 [c,d]=size (Xmine); % plot individual mines
 for (i=1:d)
 mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing
the obstacle
 plot(mine(1, :), mine(2, :));
 end
 hold off
end
xmean = mean(q(:, 1:num)')';
ymean = mean(q(:, num+1:2*num)')';
xvar = var(q(:, 1:num)')';
yvar = var(q(:, num+1:2*num)')';

figure(3)
clf(3);
subplot(2,2,1)
plot(t, xmean,'b:');

hold;
[xx, qq] = size(traj_hist);
for i = 1:xx
 T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]';
 Cmx = traj_hist(i, 9:12)';
 plot(T, Cmx(1)*T.^3 + Cmx(2)*T.^2 + Cmx(3)*T + Cmx(4), 'r-');
 title('Platoon Tracking Mean X Errors');
 xlabel('Time (s)');
 ylabel('Mean X (m)');
end
hold
subplot(2,2,2)
plot(t, ymean,'b:');
hold;
for i = 1:xx
 T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]';
 Cmy = traj_hist(i, 13:16)';
 plot(T, Cmy(1)*T.^3 + Cmy(2)*T.^2 + Cmy(3)*T + Cmy(4), 'r-');
 title('Platoon Tracking Mean Y Errors');
 xlabel('Time (s)');
 ylabel('Mean Y (m)');
end
hold
subplot(2,2,3)
plot(t, xvar,'b:');
hold;
for i = 1:xx
 T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]';
 Cx = traj_hist(i, 1:4)';
 plot(T, Cx(1)*T.^3 + Cx(2)*T.^2 + Cx(3)*T + Cx(4), 'r-');
 title('Platoon Tracking Variance X Errors');
 xlabel('Time (s)');
 ylabel('Variance X ');
end
hold
subplot(2,2,4)
plot(t, yvar,'b:');
hold;
for i = 1:xx
 T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]';
 Cy = traj_hist(i, 5:8)';
 plot(T, Cy(1)*T.^3 + Cy(2)*T.^2 + Cy(3)*T + Cy(4), 'r-');
 title('Platoon Tracking Variance Y Errors');
 xlabel('Time (s)');
 ylabel('Variance Y ');
end
legend('actual values', 'desired values');
hold
collision = 0;
min_dist = 1000;
for i = 1:length(q)
 X = [];
 for j = 1:num
 X = [X, [q(i, j); q(i, j+num)]];
 end
 for k = 1:2
 for l = k+1:num
 dist = X(:, k) - X(:, l);
 dist = sqrt(dist'*dist);
 if (dist < min_dist)
 min_dist = dist;
 end
 if (dist < 0.06*sqrt(2))
 error('Collison!');
 end
 end
 end
end

 101

%Appendix K
% Yong Tan, Trident scholar project
% function to find the position of each individual robots
% based on their current location.
function qdot = statsump(t, q)

global Km Kv Ka
global mudx vardx mudxf vardxf mux
global mudy vardy mudyf vardyf muy
global R RAD RRAD Radmine
global Xobst Yobst RADOBST Cx Cy Cmx Cmy num
global leg tf Xmine Ymine
global traj_hist
global avoid_hist avoid_obst XR YR
global A E F
global xydifferences

%C terms are used to control tragectories.
%Cx,Cy are variance tragectory controls
%Cmx,Cmy are mean trajectory controls
Ki=0.8;% gain of the mean

feedforward = 1;% drive robots forward in jacobian

%check distance between robots and the mines,
findmine=checkdist(q, Xmine, Ymine, Radmine); %find cloest dist and position
closestdistmine=findmine(1,:); %find closest mine dist
posmine=findmine(2,:); % position of mine

%check distance between robots and the obstacles
findobst=checkdist(q, Xobst, Yobst, R);
closestobst=findobst(1,:);
posobst=findobst(2,:);

mux = mean(q(1:num)); % x=q... represent the states x, y, x= 1:4, y 5:8
muy = mean(q(num+1:2*num)); % x(5:8) represent the y values
varx = var(q(1:num)); % variance of x
vary = var(q(num+1:2*num)); % variance of y
x_d = mudxf(leg);
y_d = mudyf(leg);

 magnitude=sqrt((x_d - mux)^2+ (y_d - muy)^2); % distance from centroid of swarm
to waypoint
 %waypoint changes if the time is
 for mm = 1:length(mudxf)
 if (t < traj_hist(mm, 17))
 break;
 end
 end
 leg = mm;
 %calculated trajectory projection based on each leg
 Cx = traj_hist(leg, 1:4)';
 Cy = traj_hist(leg, 5:8)';
 Cmx = traj_hist(leg, 9:12)';
 Cmy = traj_hist(leg, 13:16)';

 mudx = Cmx'*[t^3 t^2 t 1]'; %desired x mean position
 mudy = Cmy'*[t^3 t^2 t 1]'; %desired y mean position
 dmudx = Cmx'*[3*t^2 2*t 1 0]'; %desired vx mean velocity, derivatives
 dmudy = Cmy'*[3*t^2 2*t 1 0]'; %desired vy mean velocity, derivatives

 varxt = Cx'*[t^3 t^2 t 1]'; %desired x position variance
 varyt = Cy'*[t^3 t^2 t 1]'; %desired y position variance
 dvarxt = Cx'*[3*t^2 2*t 1 0]'; %desired vx velocity variance, derivatives
 dvaryt = Cy'*[3*t^2 2*t 1 0]'; %desired vy velocity variance, derivatives
 t
 J = [1/num*(ones(1,num)); 2/(num-1)*((q(1:num))'-mux)]; % matrix defined by
state and task function: difference from mean in x

 Jy = [J(1, :); 2/(num-1)*(q(num+1:2*num)' - muy)]; %alternate matrix defined by
state -diff from mean in y
 J = [J zeros(2, num); zeros(2, num) Jy]; %create matrix of no. by 8 to discribe
x and y characteristics for no. roobots
 Jp = J'*(J*J')^(-1); % Moore-Penrose pseudo inverse T (resultant- 3by 8
matrix)

 % attractive vectors to keep swarm moving forward
 xa = [Km*(mudx - mux)+ feedforward*dmudx; Kv*(varxt - varx) + dvarxt]; %the
changes in mean and variance in x with feedforward term
 xay = [Km*(mudy - muy)+ feedforward*dmudy; Kv*(varyt - vary) + dvaryt]; %the
changes in mean and variance in y with feedforward term
 xd = [xa; xay];%

 anglevec = zeros(1,6); % store angles of the vectors
 % find angle for each vector in grid
 for f=1:num
 q1=q(f);
 q2=q(f+num);
 gridx=round(q1);
 gridy=round(q2);

 anglemat=[];
 anglemat=set_angle;
 L_F= length(F);
 L_A= length (A);
 %A=ones(length(F));

 for z=1:L_A
 for j=1:L_F
 if ((z==gridx) && (j==gridy))
 anglevec(f)=anglemat(z,j);
 break;
 end
 end
 end
 anglevec(f);

 end
 distbtwnrobots=checksepdistance(q); % check distance between each robot

%*************** generating subsumption in a single robot

% function to calculate repulsion from each robot
%irrep = zeros(2*num, 1);
num_active = 0;
for (i = 1:num)

 q1=q(i);
 q2=q(i+num);

%% BEHAVIOR: AVOID MINE
if ((closestdistmine(i)<=0.4)||((closestdistmine(i) <=0.8)&&(avoid_hist(i)==1)))
 avoid_hist(i) = 1;
 Xactm=Xmine(posmine(i)); % actual X position of mine
 Yactm=Ymine(posmine(i)); % actual Y position of mine
 figure(1);
 plot(Xactm, Yactm,'gd');

 repelmine=findreppot(q1,q2,Xactm,Yactm,Radmine);
 pot(i)=repelmine(1);
 pot(i+num)=repelmine(2);
 num_active = num_active + 1;
else
 %% BEHAVIOR: AVOID OBSTACLE
 if ((closestobst(i)<=0.5)||((closestobst(i) <=1)&&(avoid_hist(i)==1)))
 avoid_hist(i) = 1;
 Xactobst=Xobst(posobst(i));

 102

 Yactobst=Yobst(posobst(i));
 figure(1);
 plot(Xactobst, Yactobst,'r*');

 repobst=findreppot(q1,q2,Xactobst,Yactobst,R);
 pot(i)=repobst(1);
 pot(i+num)=repobst(2);
 num_active = num_active + 1;
 else
 avoid_hist(i) = 0;
 %find largest distance between robots and the current mean
 sepdist=findmaxsep(q1,q2,mudx, mudy);

 %% BEHAVIOR: AGGREGATION
 if ((sepdist(1))> 6)
 lengthc= sepdist(1);
 anglec= sepdist(2);

 pot(i)=lengthc * cos(anglec);
 pot(i+num)=lengthc * sin(anglec);
 num_active = num_active + 1;
 else
 %% BEHAVIOR: SEPARATION
 checkclosest=[];
 checkclosest=distbtwnrobots(i,:);
 [Val, posi]=min(checkclosest);
 px=[];
 eachrobotrepx=0;
 eachrobotrepy=0;

 if Val<1;
 %check which robots are closer than 1
 for ic=1:num
 valuedist =checkclosest(1,ic);
 if valuedist<1
 xxd=xydifferences(i,ic);
 xyd=xydifferences(i,ic+num) ;

 theta_ba=atan2(xyd, xxd);
 px=(1/valuedist)*cos(theta_ba);
 px2=(1/valuedist)*sin(theta_ba);

 else
 px=0;
 px2=0;
 end
 eachrobotrepx=eachrobotrepx+px;
 eachrobotrepy=eachrobotrepy+px2;
 end

 pot(i)=eachrobotrepx;
 pot(i+num)=eachrobotrepy;
 num_active = num_active + 1;

 %% BEHAVIOR: RANDOM
 else

 if ((t > 0)&&(num_active < 3))
 pot(i) = 0.5*XR(ceil(t), i);
 pot(i+num) = 0.5*YR(ceil(t), i);
 num_active = num_active + 1;
 else
 pot(i) = 0;
 pot(i+num) = 0;
 end
 end
 end
 end

end
end

qdot = Jp*xd + Ka*(eye(2*num) - Jp*J)*(pot');

 103

% Appendix L
% Yong Tan, Trident Scholar Project
% This file simulates the hybrid controller in a drift environment
global mudx vardx mudxf vardxf % global variables of changes in mean and variance of
x
global mudy vardy mudyf vardyf % global variables of changes in mean and variance of
y
global Km Kv Ka % motion, velocity and acceleration constants
global R RAD RRAD Radmine% xoffset, yoffset, mean offset,
global Xobst Yobst Cx Cy Cmx Cmy num
global leg tf Xmine Ymine
global traj_hist
global A E F
global avoid_hist XR YR
global xydifferences

traj_hist = [];
num=6; % number of robots
avoid_hist = zeros(num, 1);
R = 1; % Radius of obstacle
mudxf = [2 12 12];
mudyf = [10 10 0];
vardxf = [5 3 5];
vardyf = [3 5 3];
Km = 3; % 3 motion constant
Kv = 3; % 3 velocity constant
Ka = 5; % 1 % acceleration constant
RAD = 2; % minimum separtion distance between robots
RRAD = 0.5; % 1 % minimum distance between individual robots to obstacle
Radmine=0.3;
record = 0;
Xobst= [3 6 10];
Yobst = [4 8 4];
Xmine = [7 10];
Ymine = [10 6];
leg=1;

tf =18; % final time in sec
tspan = [0 tf]; % time span from 0-20 s

q0=[0 1 2 3 4 3.8105 0 2 0 2 1 2.5];

XR = [0.9501 0.4103 0.8462 0.1509 0.8385 0.1365
 0.2311 0.8936 0.5252 0.6979 0.5681 0.0118
 0.6068 0.0579 0.2026 0.3784 0.3704 0.8939
 0.4860 0.3529 0.6721 0.8600 0.7027 0.1991
 0.8913 0.8132 0.8381 0.8537 0.5466 0.2987
 0.7621 0.0099 0.0196 0.5936 0.4449 0.6614
 0.4565 0.1389 0.6813 0.4966 0.6946 0.2844
 0.0185 0.2028 0.3795 0.8998 0.6213 0.4692
 0.8214 0.1987 0.8318 0.8216 0.7948 0.0648
 0.4447 0.6038 0.5028 0.6449 0.9568 0.9883
 0.6154 0.2722 0.7095 0.8180 0.5226 0.5828
 0.7919 0.1988 0.4289 0.6602 0.8801 0.4235
 0.9218 0.0153 0.3046 0.3420 0.1730 0.5155
 0.7382 0.7468 0.1897 0.2897 0.9797 0.3340
 0.1763 0.4451 0.1934 0.3412 0.2714 0.4329
 0.4057 0.9318 0.6822 0.5341 0.2523 0.2259
 0.9355 0.4660 0.3028 0.7271 0.8757 0.5798
 0.9169 0.4186 0.5417 0.3093 0.7373 0.7600];

YR =[0.9669 0.4608 0.4199 0.6273 0.7036 0.7009
 0.6649 0.4574 0.7537 0.6991 0.4850 0.9623
 0.8704 0.4507 0.7939 0.3972 0.1146 0.7505
 0.0099 0.4122 0.9200 0.4136 0.6649 0.7400
 0.1370 0.9016 0.8447 0.6552 0.3654 0.4319
 0.8188 0.0056 0.3678 0.8376 0.1400 0.6343
 0.4302 0.2974 0.6208 0.3716 0.5668 0.8030

 0.8903 0.0492 0.7313 0.4253 0.8230 0.0839
 0.7349 0.6932 0.1939 0.5947 0.6739 0.9455
 0.6873 0.6501 0.9048 0.5657 0.9994 0.9159
 0.3461 0.9830 0.5692 0.7165 0.9616 0.6020
 0.1660 0.5527 0.6318 0.5113 0.0589 0.2536
 0.1556 0.4001 0.2344 0.7764 0.3603 0.8735
 0.1911 0.1988 0.5488 0.4893 0.5485 0.5134
 0.4225 0.6252 0.9316 0.1859 0.2618 0.7327
 0.8560 0.7334 0.3352 0.7006 0.5973 0.4222
 0.4902 0.3759 0.6555 0.9827 0.0493 0.9614
 0.8159 0.0099 0.3919 0.8066 0.5711 0.0721];

mudx = mean(q0(1:num)); % mean x at starting time
mudy = mean(q0(num+1: 2*num));% mean y at starting time
vardx = var(q0(1:num)); %initial varx
vardy = var(q0(num+1: 2*num));

% calculate trajetory history for each leg!!!!! % to be used in function
for zz = 1 : 3 %number of waypoints
 tfl = tf/3 + tf/3*(zz-1);
 til = tfl - tf/3;
 %polynomial interpolation
 if (zz > 1)
 mudx = mudxf(zz-1);
 mudy = mudyf(zz-1);
 vardx = vardxf(zz-1);
 vardy = vardyf(zz-1);
 end
 Cx = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1
0]^(-1)*[vardx; 0; vardxf(zz); 0];
 Cy = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1
0]^(-1)*[vardy; 0; vardyf(zz); 0];

 Cmx = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1
0]^(-1)*[mudx; 0; mudxf(zz); 0];
 Cmy = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1
0]^(-1)*[mudy; 0; mudyf(zz); 0];
 traj_hist = [traj_hist; Cx' Cy' Cmx' Cmy' tfl];
end

figure(1);
clf(1);
hold;
options = odeset('RelTol', 1e-12, 'AbsTol', 1e-10*[ones(2*num,1)]');
[t, q] = ode45('newstatsump', tspan, q0); % calculates the x, y position based on
time
%plot vector fields
test;
 nextT = 0;
 axis([-2 16 -3 14]);
 axis('manual');
 xlabel('X (m)');
 ylabel('Y (m)');
 title('Motion of Platoon Units with the Hybrid Controller Without Vector
Compensation');
 %hold;
 theta = 0:0.01:2*pi;
 [a,b]=size (Xobst);
 for (i=1:b)
 obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the
obstacle
 plot(obst(1, :), obst(2, :));
 end
 [a,c]=size (Xmine);
 for (i=1:c)
 mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing
the obstacle
 plot(mine(1, :), mine(2, :));

 104

 end
 robot = [-0.03 -0.03; 0.03 -0.03; 0.03 0.03; -0.03 0.03];% using little squares
to represent the robots
 clear M;
 col = ['g', 'r', 'b', 'c', 'm', 'y'];
 for (i = 1:length(t))
 if t(i) >= nextT % everytime, T, draw and color robot..
 for (j = 1:num)
 fill(robot(:, 1)+q(i, j), robot(:, 2)+q(i, j+num), col(j)); % fill
in shape and color of the simulated robots.
 end
 nextT = nextT + 0.10; % at next time T
 end
 %M(i) = getframe;
 %pause
 end
 axis('equal');
 axis([min(min(q(:, 1:6)))-1, max(max(q(:,1:6)))+1,min(min(q(:, 7:12)))-1,
max(max(q(:,7:12)))+1]);
 hold off;
% %labelling the plot
% for h=1:(length(Xobst))
% gtext(['Obstacle #',num2str(h)]);
% end
% for p=1:(length(Xmine))
% gtext(['Mine #',num2str(p)]);
% end
% for j=1:num
% gtext(['Unit #',num2str(j)]);
% end
figure(2)
clf(2);
for i = 1:6
 subplot(3,2,i);
 axis([-2 16 -2 16]);
 axis('manual');
 title(['Unit #', num2str(i)]);
 ylabel('Y (m)');
 if i>4
 xlabel('X (m)');
 end
 hold
 plot(q(:, 1+(i-1)), q(:, 1+num+(i-1))); % plot individual paths
 [a,b]=size (Xobst); %plot individual obstacles
 theta = 0:0.01:2*pi;
 for (i=1:b)
 obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the
obstacle
 plot(obst(1, :), obst(2, :));
 end
 [c,d]=size (Xmine); % plot individual mines
 for (i=1:d)
 mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing
the obstacle
 plot(mine(1, :), mine(2, :));
 end
 hold off
end
xmean = mean(q(:, 1:num)')';
ymean = mean(q(:, num+1:2*num)')';
xvar = var(q(:, 1:num)')';
yvar = var(q(:, num+1:2*num)')';

figure(3)
clf(3);
subplot(2,2,1)
plot(t, xmean,'b:');
hold;

[xx, qq] = size(traj_hist);
for i = 1:xx
 T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]';
 Cmx = traj_hist(i, 9:12)';
 plot(T, Cmx(1)*T.^3 + Cmx(2)*T.^2 + Cmx(3)*T + Cmx(4), 'r-');
 title('Platoon Tracking Mean X Errors');
 xlabel('Time (s)');
 ylabel('Mean X (m)');
end
hold
subplot(2,2,2)
plot(t, ymean,'b:');
hold;
for i = 1:xx
 T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]';
 Cmy = traj_hist(i, 13:16)';
 plot(T, Cmy(1)*T.^3 + Cmy(2)*T.^2 + Cmy(3)*T + Cmy(4), 'r-');
 title('Platoon Tracking Mean Y Errors');
 xlabel('Time (s)');
 ylabel('Mean Y (m)');
end
hold
subplot(2,2,3)
plot(t, xvar,'b:');
hold;
for i = 1:xx
 T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]';
 Cx = traj_hist(i, 1:4)';
 plot(T, Cx(1)*T.^3 + Cx(2)*T.^2 + Cx(3)*T + Cx(4), 'r-');
 title('Platoon Tracking Variance X Errors');
 xlabel('Time (s)');
 ylabel('Variance X ');
end
hold
subplot(2,2,4)
plot(t, yvar,'b:');
hold;
for i = 1:xx
 T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]';
 Cy = traj_hist(i, 5:8)';
 plot(T, Cy(1)*T.^3 + Cy(2)*T.^2 + Cy(3)*T + Cy(4), 'r-');
 title('Platoon Tracking Variance Y Errors');
 xlabel('Time (s)');
 ylabel('Variance Y ');
end
legend('actual values', 'desired values');
hold

collision = 0;
min_dist = 1000;
for i = 1:length(q)
 X = [];
 for j = 1:num
 X = [X, [q(i, j); q(i, j+num)]];
 end
 for k = 1:2
 for l = k+1:num
 dist = X(:, k) - X(:, l);
 dist = sqrt(dist'*dist);
 if (dist < min_dist)
 min_dist = dist;
 end
 if (dist < 0.06*sqrt(2))
 error('Collison!');
 end
 end
 end
end

 105

%Appendix M
% Yong Tan, Trident Scholar Project
% Function to run program that simulates movement of robots
% in a drift environment

function qdot = newstatsump(t, q)
% function show the statistical controllers work in an
%environment with mines and obstacles.

global Km Kv Ka
global mudx vardx mudxf vardxf mux
global mudy vardy mudyf vardyf muy
global R RAD RRAD Radmine
global Xobst Yobst RADOBST Cx Cy Cmx Cmy num
global leg tf Xmine Ymine
global traj_hist
global avoid_hist avoid_obst XR YR
global A E F
global xydifferences

%C terms are used to control tragectories.
%Cx,Cy are variance tragectory controls
%Cmx,Cmy are mean trajectory controls
Ki=0.8;% gain of the mean
% Kivx=0.25; % gain of the variance
% Kivy=0.8;

feedforward = 1;% drive robots forward in jacobian

%check distance between robots and the mines,
findmine=checkdist(q, Xmine, Ymine, Radmine); %find cloest dist and position
closestdistmine=findmine(1,:); %find closest mine dist
posmine=findmine(2,:); % position of mine

%check distance between robots and the obstacles
findobst=checkdist(q, Xobst, Yobst, R);
closestobst=findobst(1,:);
posobst=findobst(2,:);

mux = mean(q(1:num)); % x=q... represent the states x, y, x= 1:4, y 5:8
muy = mean(q(num+1:2*num)); % x(5:8) represent the y values
varx = var(q(1:num)); % variance of x
vary = var(q(num+1:2*num)); % variance of y
x_d = mudxf(leg);
y_d = mudyf(leg);

 magnitude=sqrt((x_d - mux)^2+ (y_d - muy)^2); % distance from centroid of swarm
to waypoint

 %waypoint changes if the time is
 for mm = 1:length(mudxf)
 if (t < traj_hist(mm, 17))
 break;
 end
 end
 leg = mm;
 %calculated trajectory projection based on each leg
 Cx = traj_hist(leg, 1:4)';
 Cy = traj_hist(leg, 5:8)';
 Cmx = traj_hist(leg, 9:12)';
 Cmy = traj_hist(leg, 13:16)';

 mudx = Cmx'*[t^3 t^2 t 1]'; %desired x mean position
 mudy = Cmy'*[t^3 t^2 t 1]'; %desired y mean position
 dmudx = Cmx'*[3*t^2 2*t 1 0]'; %desired vx mean velocity, derivatives
 dmudy = Cmy'*[3*t^2 2*t 1 0]'; %desired vy mean velocity, derivatives

 varxt = Cx'*[t^3 t^2 t 1]'; %desired x position variance

 varyt = Cy'*[t^3 t^2 t 1]'; %desired y position variance
 dvarxt = Cx'*[3*t^2 2*t 1 0]'; %desired vx velocity variance, derivatives
 dvaryt = Cy'*[3*t^2 2*t 1 0]'; %desired vy velocity variance, derivatives

 t
 J = [1/num*(ones(1,num)); 2/(num-1)*((q(1:num))'-mux)]; % matrix defined by
state and task function: difference from mean in x
 Jy = [J(1, :); 2/(num-1)*(q(num+1:2*num)' - muy)]; %alternate matrix defined by
state -diff from mean in y
 J = [J zeros(2, num); zeros(2, num) Jy]; %create matrix of no. by 8 to discribe
x and y characteristics for no. roobots
 Jp = J'*(J*J')^(-1); % Moore-Penrose pseudo inverse T (resultant- 3by 8
matrix)

 % attractive vectors to keep swarm moving forward
 xa = [Km*(mudx - mux)+ feedforward*dmudx; Kv*(varxt - varx) + dvarxt]; %the
changes in mean and variance in x with feedforward term
 xay = [Km*(mudy - muy)+ feedforward*dmudy; Kv*(varyt - vary) + dvaryt]; %the
changes in mean and variance in y with feedforward term
 xd = [xa; xay];%

 anglevec = zeros(1,6); % store angles of the vectors
 % find angle for each vector in grid
 for f=1:num
 q1=q(f);
 q2=q(f+num);
 gridx=round(q1);
 gridy=round(q2);

 anglemat=[];
 anglemat=set_angle;
 L_F= length(F);
 L_A= length (A);
 %A=ones(length(F));

 for z=1:L_A
 for j=1:L_F
 if ((z==gridx) && (j==gridy))
 anglevec(f)=anglemat(z,j);
 break;
 end
 end
 end
 anglevec(f);

 end
 distbtwnrobots=checksepdistance(q); % check distance between each robot

%*************** generating subsumption in a single robot

% function to calculate repulsion from each robot
%irrep = zeros(2*num, 1);
num_active = 0;
for (i = 1:num)
 q1=q(i);
 q2=q(i+num);

%% BEHAVIOR: AVOID MINE
if ((closestdistmine(i)<=0.4)||((closestdistmine(i) <=0.8)&&(avoid_hist(i)==1)))
 avoid_hist(i) = 1;
 Xactm=Xmine(posmine(i)); % actual X position of mine
 Yactm=Ymine(posmine(i)); % actual Y position of mine
 figure(1);
 plot(Xactm, Yactm,'gd');

 repelmine=findreppot(q1,q2,Xactm,Yactm,Radmine);
 pot(i)=repelmine(1);
 pot(i+num)=repelmine(2);

 106

 num_active = num_active + 1;
else
 %% BEHAVIOR: AVOID OBSTACLE
 if ((closestobst(i)<=0.5)||((closestobst(i) <=1)&&(avoid_hist(i)==1)))
 avoid_hist(i) = 1;
 Xactobst=Xobst(posobst(i));
 Yactobst=Yobst(posobst(i));
 figure(1);
 plot(Xactobst, Yactobst,'r*');

 repobst=findreppot(q1,q2,Xactobst,Yactobst,R);
 pot(i)=repobst(1);
 pot(i+num)=repobst(2);
 num_active = num_active + 1;
 else
 avoid_hist(i) = 0;
 %find largest distance between robots and the current mean
 sepdist=findmaxsep(q1,q2,mudx, mudy);

 %% BEHAVIOR: AGGREGATION
 if ((sepdist(1))> 6)
 lengthc= sepdist(1);
 anglec= sepdist(2);

 pot(i)=lengthc * cos(anglec);
 pot(i+num)=lengthc * sin(anglec);
 num_active = num_active + 1;
 else
 %% BEHAVIOR: SEPARATION
 checkclosest=[];
 checkclosest=distbtwnrobots(i,:);
 [Val, posi]=min(checkclosest);
 px=[];
 eachrobotrepx=0;
 eachrobotrepy=0;

 if Val<1;
 %check whcih robots are closer than 1
 for ic=1:num
 valuedist =checkclosest(1,ic);
 if valuedist<1
 xxd=xydifferences(i,ic);
 xyd=xydifferences(i,ic+num) ;

 theta_ba=atan2(xyd, xxd);
 px=(1/valuedist)*cos(theta_ba);
 px2=(1/valuedist)*sin(theta_ba);
 else
 px=0;
 px2=0;
 end
 eachrobotrepx=eachrobotrepx+px;
 eachrobotrepy=eachrobotrepy+px2;
 end

 pot(i)=eachrobotrepx;
 pot(i+num)=eachrobotrepy;
 num_active = num_active + 1;
 %% BEHAVIOR: RANDOM
 else
 %
 if ((t > 0)&&(num_active < 3))
 pot(i) = 0.5*XR(ceil(t), i);
 pot(i+num) = 0.5*YR(ceil(t), i);
 num_active = num_active + 1;
 else
 pot(i) = 0;
 pot(i+num) = 0;

 end
 end
 end
 end
end
end
qdot = Jp*xd + Ka*(eye(2*num) - Jp*J)*(pot')+5*[cos(anglevec'); sin(anglevec')] ;

 107

% Appendix N
% Yong Tan, Tridnet Scholar project
% This file compensates for the drift vector of hybrid controller
global mudx vardx mudxf vardxf % global variables of changes in mean and variance of
x
global mudy vardy mudyf vardyf % global variables of changes in mean and variance of
y
global Km Kv Ka % motion, velocity and acceleration constants
global R RAD RRAD Radmine% xoffset, yoffset, mean offset,
global Xobst Yobst Cx Cy Cmx Cmy num
global leg tf Xmine Ymine
global traj_hist
global A E F
global avoid_hist XR YR
global xydifferences

traj_hist = [];
num=6; % number of robots
avoid_hist = zeros(num, 1);
R = 1; % Radius of obstacle

mudxf = [2 12 12];
mudyf = [10 10 0];
vardxf = [5 3 5];
vardyf = [3 5 3];
Km = 3; % 3 motion constant
Kv = 5; % 3 velocity constant
Ka = 5; % 1 % acceleration constant
RAD = 2; % minimum separtion distance between robots
RRAD = 0.5; % 1 % minimum distance between individual robots to obstacle
Radmine=0.3;
record = 0;
Xobst= [3 6 10];
Yobst = [4 8 4];
Xmine = [7 10];
Ymine = [10 6];
leg=1;

tf =18; % final time in sec
tspan = [0 tf]; % time span from 0-20 s

q0=[0 1 2 3 4 3.8105 0 2 0 2 1 2.5 0 0 0 0];

XR = [0.9501 0.4103 0.8462 0.1509 0.8385 0.1365
 0.2311 0.8936 0.5252 0.6979 0.5681 0.0118
 0.6068 0.0579 0.2026 0.3784 0.3704 0.8939
 0.4860 0.3529 0.6721 0.8600 0.7027 0.1991
 0.8913 0.8132 0.8381 0.8537 0.5466 0.2987
 0.7621 0.0099 0.0196 0.5936 0.4449 0.6614
 0.4565 0.1389 0.6813 0.4966 0.6946 0.2844
 0.0185 0.2028 0.3795 0.8998 0.6213 0.4692
 0.8214 0.1987 0.8318 0.8216 0.7948 0.0648
 0.4447 0.6038 0.5028 0.6449 0.9568 0.9883
 0.6154 0.2722 0.7095 0.8180 0.5226 0.5828
 0.7919 0.1988 0.4289 0.6602 0.8801 0.4235
 0.9218 0.0153 0.3046 0.3420 0.1730 0.5155
 0.7382 0.7468 0.1897 0.2897 0.9797 0.3340
 0.1763 0.4451 0.1934 0.3412 0.2714 0.4329
 0.4057 0.9318 0.6822 0.5341 0.2523 0.2259
 0.9355 0.4660 0.3028 0.7271 0.8757 0.5798
 0.9169 0.4186 0.5417 0.3093 0.7373 0.7600];

YR =[0.9669 0.4608 0.4199 0.6273 0.7036 0.7009
 0.6649 0.4574 0.7537 0.6991 0.4850 0.9623
 0.8704 0.4507 0.7939 0.3972 0.1146 0.7505
 0.0099 0.4122 0.9200 0.4136 0.6649 0.7400
 0.1370 0.9016 0.8447 0.6552 0.3654 0.4319
 0.8188 0.0056 0.3678 0.8376 0.1400 0.6343

 0.4302 0.2974 0.6208 0.3716 0.5668 0.8030
 0.8903 0.0492 0.7313 0.4253 0.8230 0.0839
 0.7349 0.6932 0.1939 0.5947 0.6739 0.9455
 0.6873 0.6501 0.9048 0.5657 0.9994 0.9159
 0.3461 0.9830 0.5692 0.7165 0.9616 0.6020
 0.1660 0.5527 0.6318 0.5113 0.0589 0.2536
 0.1556 0.4001 0.2344 0.7764 0.3603 0.8735
 0.1911 0.1988 0.5488 0.4893 0.5485 0.5134
 0.4225 0.6252 0.9316 0.1859 0.2618 0.7327
 0.8560 0.7334 0.3352 0.7006 0.5973 0.4222
 0.4902 0.3759 0.6555 0.9827 0.0493 0.9614
 0.8159 0.0099 0.3919 0.8066 0.5711 0.0721];

mudx = mean(q0(1:num)); % mean x at starting time
mudy = mean(q0(num+1: 2*num));% mean y at starting time
vardx = var(q0(1:num)); %initial varx
vardy = var(q0(num+1: 2*num));

% calculate trajetory history for each leg!!!!! % to be used in function
for zz = 1 : 3 %number of waypoints
 tfl = tf/3 + tf/3*(zz-1);
 til = tfl - tf/3;
 %polynomial interpolation
 if (zz > 1)
 mudx = mudxf(zz-1);
 mudy = mudyf(zz-1);
 vardx = vardxf(zz-1);
 vardy = vardyf(zz-1);
 end
 Cx = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1
0]^(-1)*[vardx; 0; vardxf(zz); 0];
 Cy = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1
0]^(-1)*[vardy; 0; vardyf(zz); 0];

 Cmx = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1
0]^(-1)*[mudx; 0; mudxf(zz); 0];
 Cmy = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1
0]^(-1)*[mudy; 0; mudyf(zz); 0];
 traj_hist = [traj_hist; Cx' Cy' Cmx' Cmy' tfl];
end

figure(1);
clf(1);
hold;
options = odeset('RelTol', 1e-12, 'AbsTol', 1e-10*[ones(2*num,1)]');
[t, q] = ode45('veccompensate', tspan, q0); % calculates the x, y position based on
time
test; %plot vector fields
 nextT = 0;
 axis([-2 16 -3 14]);
 axis('manual');
 xlabel('X (m)');
 ylabel('Y (m)');
 title('Motion of Platoon Units with the Hybrid Controller and Vector
Compensation');
 %hold;
 theta = 0:0.01:2*pi;
 [a,b]=size (Xobst);
 for (i=1:b)
 obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the
obstacle
 plot(obst(1, :), obst(2, :));
 end
 [a,c]=size (Xmine);
 for (i=1:c)
 mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing
the obstacle
 plot(mine(1, :), mine(2, :));

 108

 end
 robot = [-0.03 -0.03; 0.03 -0.03; 0.03 0.03; -0.03 0.03];% using little squares
to represent the robots
 clear M;
 col = ['g', 'r', 'b', 'c', 'm', 'y'];
 for (i = 1:length(t))
 if t(i) >= nextT % everytime, T, draw and color robot..
 for (j = 1:num)
 fill(robot(:, 1)+q(i, j), robot(:, 2)+q(i, j+num), col(j)); % fill
in shape and color of the simulated robots.
 end
 nextT = nextT + 0.10; % at next time T
 end
 %M(i) = getframe;
 %pause
 end
 axis('equal');
 axis([min(min(q(:, 1:6)))-1, max(max(q(:,1:6)))+1,min(min(q(:, 7:12)))-1,
max(max(q(:,7:12)))+1]);
 hold off;
% %labelling the plot
% for h=1:(length(Xobst))
% gtext(['Obstacle #',num2str(h)]);
% end
% for p=1:(length(Xmine))
% gtext(['Mine #',num2str(p)]);
% end
% for j=1:num
% gtext(['Unit #',num2str(j)]);
% end
figure(2)
clf(2);
for i = 1:6
 subplot(3,2,i);
 axis([-2 16 -2 16]);
 axis('manual');
 title(['Unit #', num2str(i)]);
 ylabel('Y (m)');
 if i>4
 xlabel('X (m)');
 end
 hold
 plot(q(:, 1+(i-1)), q(:, 1+num+(i-1))); % plot individual paths
 [a,b]=size (Xobst); %plot individual obstacles
 theta = 0:0.01:2*pi;
 for (i=1:b)
 obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the
obstacle
 plot(obst(1, :), obst(2, :));
 end
 [c,d]=size (Xmine); % plot individual mines
 for (i=1:d)
 mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing
the obstacle
 plot(mine(1, :), mine(2, :));
 end
 hold off
end
xmean = mean(q(:, 1:num)')';
ymean = mean(q(:, num+1:2*num)')';
xvar = var(q(:, 1:num)')';
yvar = var(q(:, num+1:2*num)')';
figure(3)
clf(3);
subplot(2,2,1)
plot(t, xmean,'b:');
hold;
[xx, qq] = size(traj_hist);

for i = 1:xx
 T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]';
 Cmx = traj_hist(i, 9:12)';
 plot(T, Cmx(1)*T.^3 + Cmx(2)*T.^2 + Cmx(3)*T + Cmx(4), 'r-');
 title('Platoon Tracking Mean X Errors');
 xlabel('Time (s)');
 ylabel('Mean X (m)');
end
hold
subplot(2,2,2)
plot(t, ymean,'b:');
hold;
for i = 1:xx
 T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]';
 Cmy = traj_hist(i, 13:16)';
 plot(T, Cmy(1)*T.^3 + Cmy(2)*T.^2 + Cmy(3)*T + Cmy(4), 'r-');
 title('Platoon Tracking Mean Y Errors');
 xlabel('Time (s)');
 ylabel('Mean Y (m)');
end
hold
subplot(2,2,3)
plot(t, xvar,'b:');
hold;
for i = 1:xx
 T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]';
 Cx = traj_hist(i, 1:4)';
 plot(T, Cx(1)*T.^3 + Cx(2)*T.^2 + Cx(3)*T + Cx(4), 'r-');
 title('Platoon Tracking Variance X Errors');
 xlabel('Time (s)');
 ylabel('Variance X ');
end
hold
subplot(2,2,4)
plot(t, yvar,'b:');
hold;
for i = 1:xx
 T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]';
 Cy = traj_hist(i, 5:8)';
 plot(T, Cy(1)*T.^3 + Cy(2)*T.^2 + Cy(3)*T + Cy(4), 'r-');
 title('Platoon Tracking Variance Y Errors');
 xlabel('Time (s)');
 ylabel('Variance Y ');
end
legend('actual values', 'desired values');
hold

collision = 0;
min_dist = 1000;
for i = 1:length(q)
 X = [];
 for j = 1:num
 X = [X, [q(i, j); q(i, j+num)]];
 end
 for k = 1:2
 for l = k+1:num
 dist = X(:, k) - X(:, l);
 dist = sqrt(dist'*dist);
 if (dist < min_dist)
 min_dist = dist;
 end
 if (dist < 0.06*sqrt(2))
 error('Collison!');

 end
 end
 end
end

 109

% Appendix O
% Yong Tan, Trident Scholar Project
% FUnction that runs to show how robots compensate for drift.

function qdot = veccompensate(t, q)
% function show the statistical controllers work in an
%environment with mines and obstacles.

global Km Kv Ka
global mudx vardx mudxf vardxf mux
global mudy vardy mudyf vardyf muy
global R RAD RRAD Radmine
global Xobst Yobst RADOBST Cx Cy Cmx Cmy num
global leg tf Xmine Ymine
global traj_hist
global avoid_hist avoid_obst XR YR
global A E F
global xydifferences
%C terms are used to control tragectories.
%Cx,Cy are variance tragectory controls
%Cmx,Cmy are mean trajectory controls
Ki=1;% gain of the mean
Kivx=1; % gain of the variance
Kivy=1;

feedforward = 1;% drive robots forward in jacobian

%check distance between robots and the mines,
findmine=checkdist(q, Xmine, Ymine, Radmine); %find cloest dist and position
closestdistmine=findmine(1,:); %find closest mine dist
posmine=findmine(2,:); % position of mine

%check distance between robots and the obstacles
findobst=checkdist(q, Xobst, Yobst, R);
closestobst=findobst(1,:);
posobst=findobst(2,:);

mux = mean(q(1:num)); % x=q... represent the states x, y, x= 1:4, y 5:8
muy = mean(q(num+1:2*num)); % x(5:8) represent the y values
varx = var(q(1:num)); % variance of x
vary = var(q(num+1:2*num)); % variance of y
x_d = mudxf(leg);
y_d = mudyf(leg);

 magnitude=sqrt((x_d - mux)^2+ (y_d - muy)^2); % distance from centroid of swarm
to waypoint
 %waypoint changes if the time is
 for mm = 1:length(mudxf)
 if (t < traj_hist(mm, 17))
 break;
 end
 end
 leg = mm;
 %calculated trajectory projection based on each leg
 Cx = traj_hist(leg, 1:4)';
 Cy = traj_hist(leg, 5:8)';
 Cmx = traj_hist(leg, 9:12)';
 Cmy = traj_hist(leg, 13:16)';

 mudx = Cmx'*[t^3 t^2 t 1]'; %desired x mean position
 mudy = Cmy'*[t^3 t^2 t 1]'; %desired y mean position
 dmudx = Cmx'*[3*t^2 2*t 1 0]'; %desired vx mean velocity, derivatives
 dmudy = Cmy'*[3*t^2 2*t 1 0]'; %desired vy mean velocity, derivatives

 varxt = Cx'*[t^3 t^2 t 1]'; %desired x position variance
 varyt = Cy'*[t^3 t^2 t 1]'; %desired y position variance
 dvarxt = Cx'*[3*t^2 2*t 1 0]'; %desired vx velocity variance, derivatives
 dvaryt = Cy'*[3*t^2 2*t 1 0]'; %desired vy velocity variance, derivatives

 t
 J = [1/num*(ones(1,num)); 2/(num-1)*((q(1:num))'-mux)]; % matrix defined by
state and task function: difference from mean in x
 Jy = [J(1, :); 2/(num-1)*(q(num+1:2*num)' - muy)]; %alternate matrix defined by
state -diff from mean in y
 J = [J zeros(2, num); zeros(2, num) Jy]; %create matrix of no. by 8 to discribe
x and y characteristics for no. roobots
 Jp = J'*(J*J')^(-1); % Moore-Penrose pseudo inverse T (resultant- 3by 8
matrix)

 % attractive vectors to keep swarm moving forward
 xa = [Km*(mudx - mux)+ feedforward*dmudx; Kv*(varxt - varx) + dvarxt]; %the
changes in mean and variance in x with feedforward term
 xay = [Km*(mudy - muy)+ feedforward*dmudy; Kv*(varyt - vary) + dvaryt]; %the
changes in mean and variance in y with feedforward term
 xd = [xa; xay];%

 anglevec = zeros(1,6); % store angles of the vectors
 % find angle for each vector in grid
 for f=1:num
 q1=q(f);
 q2=q(f+num);
 gridx=round(q1);
 gridy=round(q2);

 anglemat=[];
 anglemat=set_angle;
 L_F= length(F);
 L_A= length (A);
 %A=ones(length(F));

 for z=1:L_A
 for j=1:L_F
 if ((z==gridx) && (j==gridy))
 anglevec(f)=anglemat(z,j);
 break;
 end
 end
 end
 anglevec(f);
 end
 distbtwnrobots=checksepdistance(q); % check distance between each robot

%*************** generating subsumption in a single robot
% function to calculate repulsion from each robot
%irrep = zeros(2*num, 1);
num_active = 0;
for (i = 1:num)

 q1=q(i);
 q2=q(i+num);

%% BEHAVIOR: AVOID MINE
if ((closestdistmine(i)<=0.4)||((closestdistmine(i) <=0.8)&&(avoid_hist(i)==1)))
 avoid_hist(i) = 1;
 Xactm=Xmine(posmine(i)); % actual X position of mine
 Yactm=Ymine(posmine(i)); % actual Y position of mine
 figure(1);
 plot(Xactm, Yactm,'gd');

 repelmine=findreppot(q1,q2,Xactm,Yactm,Radmine);
 pot(i)=repelmine(1);
 pot(i+num)=repelmine(2);
 num_active = num_active + 1;
else
 %% BEHAVIOR: AVOID OBSTACLE
 if ((closestobst(i)<=0.5)||((closestobst(i) <=1)&&(avoid_hist(i)==1)))

 110

 avoid_hist(i) = 1;
 Xactobst=Xobst(posobst(i));
 Yactobst=Yobst(posobst(i));
 figure(1);
 plot(Xactobst, Yactobst,'r*');

 repobst=findreppot(q1,q2,Xactobst,Yactobst,R);
 pot(i)=repobst(1);
 pot(i+num)=repobst(2);
 num_active = num_active + 1;
 else
 avoid_hist(i) = 0;
 %find largest distance between robots and the current mean
 sepdist=findmaxsep(q1,q2,mudx, mudy);

 %% BEHAVIOR: AGGREGATION
 if ((sepdist(1))> 6)
 lengthc= sepdist(1);
 anglec= sepdist(2);

 pot(i)=lengthc * cos(anglec);
 pot(i+num)=lengthc * sin(anglec);
 num_active = num_active + 1;
 else
 %% BEHAVIOR: SEPARATION
 checkclosest=[];
 checkclosest=distbtwnrobots(i,:);
 [Val, posi]=min(checkclosest);
 px=[];
 eachrobotrepx=0;
 eachrobotrepy=0;

 if Val<1;
 %check whcih robots are closer than 1
 for ic=1:num
 valuedist =checkclosest(1,ic);
 if valuedist<1
 xxd=xydifferences(i,ic);
 xyd=xydifferences(i,ic+num) ;

 theta_ba=atan2(xyd, xxd);
 px=(1/valuedist)*cos(theta_ba);
 px2=(1/valuedist)*sin(theta_ba);
 else
 px=0;
 px2=0;
 end
 eachrobotrepx=eachrobotrepx+px;
 eachrobotrepy=eachrobotrepy+px2;
 end

 pot(i)=eachrobotrepx;
 pot(i+num)=eachrobotrepy;
 num_active = num_active + 1;

 %% BEHAVIOR: RANDOM
 else
 if ((t > 0)&&(num_active < 3))
 pot(i) = 0.5*XR(ceil(t), i);
 pot(i+num) = 0.5*YR(ceil(t), i);
 num_active = num_active + 1;
 else
 pot(i) = 0;
 pot(i+num) = 0;
 end
 end
 end
 end

end

end

qdot = Jp*(xd+ [Ki*q(num*2+1); Kivx*q(num*2+2);Ki *q(num*2+3);Kivy*q(num*2+4)]) +
Ka*(eye(2*num) - Jp*J)*(pot')+4*[cos(anglevec'); sin(anglevec')] ;;
err = [mudx - mux; (varxt)-(varx); mudy - muy; (varyt)-(vary)];

qdot = [qdot; err];

